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This article discusses the concept of Bayes factors as inferential tools that can serve as an alternative
to null hypothesis significance testing in the day-to-day work of developmental researchers. A Bayes
factor indicates the degree to which data observed should increase (or decrease) the credibility of one
hypothesis in comparison to another. Bayes factor analyses can be used to compare many types of
models but are particularly helpful when comparing a point null hypothesis to a directional or
nondirectional alternative hypothesis. A key advantage of this approach is that a Bayes factor
analysis makes it clear when a set of observed data is more consistent with the null hypothesis
than the alternative. Bayes factor alternatives to common tests used by developmental psychologists
are available in easy-to-use software. However, we note that analysis using Bayes factors is a less
general approach than Bayesian estimation/modeling, and is not the right tool for every research
question.

INTRODUCTION: NULL HYPOTHESIS SIGNIFICANCE TESTING

Although its problems are well known (e.g., Cohen, 1994; Gigerenzer, Krauss, & Vitouch,
2004; Wagenmakers, 2007), null hypothesis significance testing (NHST) is the dominant
framework for statistical inference in developmental research—and indeed in most of the
biological and social sciences. The form of null hypothesis significance testing most
commonly applied is a hybrid of the older Fisherian and Neyman-Pearson approaches
(see Hubbard & Bayarri, 2003).

The basic structure of a hybrid null hypothesis significance test with respect to a parameter
(e.g., a correlation, a mean difference, a regression slope) is this: First, the researcher specifies a
null hypothesis (H0) that the true value of the parameter in the population takes some specific
value. Technically the null hypothesis could take any value, but almost always this null
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hypothesis will be that the true value of the parameter is zero.1 The null hypothesis plays a
critical role in NHST, and the analysis that proceeds centers around determining whether this
hypothesis can be rejected.

Second, the researcher collects some data, calculates a test statistic (e.g., a t statistic for a
regression slope, correlation or mean difference), and then calculates a p value. The p value is
the probability of observing a test statistic as far or further from zero than that observed, if the
null hypothesis was actually true. This p value is subsequently compared to an “alpha” level
(usually .05): If the p value is less than the alpha level, the result is considered to be statistically
significant, and the null hypothesis is rejected.

Importantly, while a p value less than .05 is interpreted as evidence to reject the null
hypothesis, a p value greater than .05 is not interpreted as evidence that the null hypothesis is
true in hybrid NHST. Rather, a nonsignificant result is only taken to indicate a lack of evidence
to reject the null hypothesis. Indeed, a nonsignificant result could very well be the result of lack
of statistical power rather than a true null hypothesis (low power being a major problem in
psychology; see Sedlmeier & Gigerenzer, 1989). The hybrid NHST framework provides little
basis for distinguishing between these two possible explanations for a nonsignificant effect. This
is the case even in the context of replication studies: The NHST researcher may take solace in
the null hypothesis through many nonsignificant replications of a study, but such replications do
not necessarily provide strong evidence that the null hypothesis is correct. The hybrid approach
to NHST therefore treats only one type of outcome as informative: A significant result.

Some other problems with NHST that may be familiar to developmental researchers include:

● The use of NHST can oversimplify findings by dichotomizing effects into “significant” and
“nonsignificant” on the basis of the largely arbitrary criterion of alpha = .05, rather than
allowing for a graduation of evidence (Rosnow & Rosenthal, 1989).

● NHST tells us about the probability of the data2 observed if the null hypothesis was true,
when we may be more interested in the converse: The probability that an hypothesis is true,
given the data observed (see Cohen, 1994).

● The validity of a p value depends on the intentions of the researcher. For example, if the
stopping of data collection is contingent on the p value reaching a certain value the usual
interpretation of the p value is compromised, and the Type 1 error rate may be higher than
alpha (see Wagenmakers, 2007).

● In NHST we consider only the (tail-area) probability of the data under H0, and not its
probability under H1. Consequently an NHST analysis does not necessarily indicate
whether a set of observed data is more consistent with the null hypothesis than with the
alternative hypothesis.

In addition to the general methodological problems specified above, some problems with
hybrid NHST are particularly relevant to nonacademic users of research. First, the results of even
the simplest NHST analyses are difficult to understand. Few members of the general public are
able to correctly interpret the result of a test of statistical significance, despite their ubiquity. A

1A hypothesized parameter value of zero is sometimes termed the “nil” or “nil-null” hypothesis to acknowledge the
possibility of a null hypothesis of a nonzero effect; in this article for convention’s sake we will use the generic term null
hypothesis to refer to a hypothesis of a zero effect.

2 Technically, the tail-area probability of the test statistic.
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survey by Tromovitch (2015) found that only about 4% of U.S. adults could so much as define
the term statistical significance reasonably correctly. Even among academics and teachers of
statistics, misconceptions about p values abound (Haller & Krauss, 2002). These misconceptions
include the idea that the p value is the probability that the null hypothesis is true, that it is the
probability of making a Type I error, or that it is the probability that a replication would fail to
find the same finding.

Second, the fact that NHST produces statements about uncertainty that are difficult to correctly
understand (e.g., “the probability of a test statistic that is as or more extreme than that observed is
.03”) has a flow-on consequence: Readers and users of developmental research using NHST may
find it difficult to understand the magnitude of uncertainty surrounding research findings. The
general public often misinterprets information about scientific uncertainty, even when it is
provided in the form of simple and direct statements about the probability that a particular
conclusion is correct (see for example Budescu, Broomell, & Por, 2009). When information
about uncertainty is couched in the esoteric language of NHST, the general public will be even
less likely to understand the degree of uncertainty present. In turn, this may lead readers to either
underestimate or exaggerate the degree of uncertainty surrounding particular research conclusions.

Finally, the asymmetry of the type of results a significance test can offer (with significant results
generally regarded as informative, whereas nonsignificant results are not) may be one of many
factors underlying the problem of publication bias—a preference amongst writers, reviewers and
editors for publishing significant rather than nonsignificant findings (see Ferguson & Heene,
2012). Regarding only statistically significant results as informative—and therefore worth publish-
ing—results in a biased literature, wherein the average reported size of effects is inflated by the
exclusion of smaller, nonsignificant effect sizes. In turn, publication bias may encourage research-
ers to use questionable research practices in an attempt to produce statistically significant findings
(see Simmons, Nelson, & Simonsohn, 2011). Questionable research practices are a problem in
developmental research; Peterson (2016) described how developmental psychologists studying
infants and toddlers use strategies such as flexibility in data exclusion rules, continuing experi-
ments only if the first few trials suggest evidence of an effect, and hypothesizing after the results
are known, all to produce statistically significant results3.

We should acknowledge at this juncture that the problems above apply to NHST as typically
practiced—that is, hybrid NSHT, with a null hypothesis of a zero effect. There do exist
approaches to statistical significance testing that deal with some of these problems. For example,
equivalence testing (Schuirmann, 1987), Neyman-Pearson testing (see Hager, 2013; Neyman &
Pearson, 1933) and the “error statistics” framework (Mayo & Spanos, 2011) all in various ways
allow for researchers to support null hypotheses. There also exist strategies extraneous to the
analysis itself that can greatly improve the validity of hybrid NHST: For example, preregistration
(Wagenmakers, Wetzels, Borsboom, Van Der Maas, & Kievit, 2012) helps to deal with the
problems of questionable research practices and publication bias, whereas appropriate use of
power analysis (see Cohen, 1988) can improve the reporting of scientific uncertainty (i.e., in
terms of the risks of Type 1 and Type 2 error). In this article, however, we focus on a Bayesian
solution to the problems listed above: Bayes factor analyses.

3 This said, the noninformative nature of nonsignificant results is obviously only one of many reasons for the
presence of publication bias. Whenever publication is contingent on what a study finds (rather than the quality of its
methods), a biased literature will result; no statistical test can form a complete solution to this problem.
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BAYESIAN ESTIMATION

An alternative to NHST that is discussed in detail in (Zondervan-Zwijnenburg et al., in press) is
Bayesian estimation (also known as Bayesian modeling), wherein a model is specified and its
parameters are estimated based on prior information and the data at hand. One of the main
attractions of a Bayesian approach is that it allows for the calculation of the probability that a
hypothesis itself is correct (or that a parameter falls in a particular interval), neither of which we
can calculate when using NHST. Bayesian estimation can easily accommodate stopping data
collection early when results appear decisive, and it allows us to take into account available prior
information we have about an effect, thus potentially producing more accurate inferences.

Bayesian estimation is not without its challenges. Bayesian estimation requires the
researcher to specify prior beliefs or knowledge about each parameter in the form of a
prior probability distribution. To the newcomer, this can seem a strange and difficult task:
How should we summarize what we know (or currently think we know) about a particular
correlation or regression coefficient, prior to analyzing the data at hand? Specifying priors
well requires good mathematical knowledge of candidate probability distributions as well as
subjective decision making (although choosing to ignore what we knew before collecting
data, as in a frequentist analysis, is no less a subjective and potentially problematic decision;
see Gelman, 2012).

Bayesian estimation may be especially challenging for the developmental researcher who is
interested in testing a point null hypothesis (e.g., a null hypothesis of an exactly zero effect).
Although it is reasonably clear how to go about obtaining point and interval estimates using
Bayesian modeling, it not so obvious how to go about testing a point null hypothesis. Testing
such point null hypotheses is the objective of most applications of NHST.

Some researchers attempt to accomplish a Bayesian test of a point null hypothesis by
specifying a continuous prior distribution for a parameter, collecting data and calculating a
95% credible interval for this parameter, and then rejecting the null hypothesis if the credible
interval does not span zero. Kruschke and Liddell (2017) summarize the problems with this
approach: “First, it can only reject a parameter value and never accept it. Second, with optional
stopping (i.e., gradually accumulating data and repeatedly testing) the decision rule will even-
tually always reject a null value even when it is true” (p. 7). Furthermore, this method fails to
actually indicate the posterior probability that the null hypothesis is true. These problems
illustrate the general fact that a Bayesian analysis that is poorly implemented or a poor fit
with the researcher’s substantive questions will not necessarily be any more valuable than a
routine application of NHST.

It is possible to test a point null hypothesis using Bayesian estimation in a principled fashion
that delivers the posterior probability that the null is true, but in such cases using a single
continuous prior probability distribution for the parameter is problematic. We discuss one way to
directly use Bayesian estimation to test a point null hypothesis later in the article, but the
difficulties involved this task may be off-putting for some researchers4.

4 Specifically, testing a point hypothesis using Bayesian estimation is conceptually difficult because it requires the
prior specification to take the form of a mixture between a point mass and a continuous probability distribution, and
computationally difficult because it typically requires term-based model specification in programming languages such as
Stan (Carpenter et al., in press) or JAGS (Plummer, 2003).
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BAYES FACTORS FOR TESTING POINT NULL HYPOTHESES

Fortunately, however, there exists a Bayesian framework that was specifically constructed for
the testing of point null hypotheses and that can be used without much computational
difficulty: Analysis using Bayes factors. The idea of using Bayes factors for hypothesis
testing dates back to Jeffreys (1935; for a history see Etz & Wagenmakers, 2015). Jeffreys
was concerned with how we ever might come to support a “general law” (e.g., that the true
value of particular parameter takes some exact point value) based on a finite sample if our
prior probability distribution was noninformative. While Jeffreys (e.g., Jeffreys, 1980) dis-
cussed this point with reference to discrete distributions, the problem is particularly acute
with a continuous prior probability distribution, which places zero prior probability on the
parameter of interest taking any specific point value. Thus, with a continuous prior, no
possible data could ever lead to a positive posterior probability that the true value of the
parameter takes a specific point value (such as zero).

As a solution, Jeffreys (1935) suggested that it was possible to treat the testing of a point null
hypothesis as a case of model comparison: We compare the likelihood of the data under a null
model (in which the true value of the parameter is presumed to be zero) to the likelihood of the
data under an alternative model (in which the true value is presumed nonzero). In this way it
would be possible to come to support a hypothesis that some parameter was exactly zero in size.
We now refer to this type of analysis as a Bayes factor analysis.

Mathematically, a Bayes factor shows how many time more (or less) likely a particular set of
data would be under one model in comparison to another5. The two models compared might take
the form of a null hypothesis (H0) that a parameter is zero, and an alternative hypothesis (H1)
that the parameter is not zero (as in the formula below6). We focus on this simple scenario
throughout this article, though these are not the only types of models that might be compared
using Bayes factors.

BF10 ¼ PðDatajH1Þ
PðDatajH0Þ

Just as in NHST, a Bayes factor comparison of a null hypothesis and an alternative hypothesis
considers how probable a particular set of observations would be if the null hypothesis was true,
P(Data | H0)

7. However, a Bayes factor analysis also considers how probable the observations
would be if the alternative hypothesis was true. The hypothesis under which the data would be
more likely is the one whose credibility is improved by the observation of this data.

5 Some readers may notice that a Bayes factor analysis is thus similar in structure to a frequentist likelihood ratio test
(see Glover & Dixon, 2004). The primary practical difference is that a frequentist likelihood ratio test typically compares
the likelihood of the data if the true parameter value were zero to the likelihood of the data if the true parameter value
were the same as the sample estimate (thus testing an alternative hypothesis that was formed after seeing the data). In
contrast, a Bayes factor analysis tests an alternative hypothesis that is specified prior to the data analysis, and that spreads
prior credibility over a range of values.

6 Throughout the article we have placed the H1 hypothesis in the numerator of the Bayes factor equation, and H0 in
the denominator. This is purely a matter of convention; it would be just as legitimate to express the Bayes factor with H1

in the denominator and H0 in the numerator.
7 Technically it is the tail-area probability of the test statistic—rather than the probability of the data itself—which is

calculated in NHST.
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Prior Specification for Bayes Factor Analyses

But how is it possible to calculate the probability of the data if the alternative hypothesis was
true, given that the alternative hypothesis is generally just a vague statement that the true effect
size is something other than zero? The answer is that we have to specify a conditional prior
probability distribution for the effect size. The prior indicates which values of the parameter
would be more or less probable if we knew the null hypothesis was false. In sum, as Jeffreys
(1935) suggested, we place some of our prior probability on the null hypothesis being true, and
spread the remainder of the prior probability over a range of values.

The prior on effect size is typically expressed in terms of the standardized effect size. As an
example of a prior on effect size, the unit Cauchy prior used in the original version of the
Bayesian t test (see Rouder, Speckman, Sun, Morey, & Iverson, 2009) implies that if the true
standardized effect size δ is not zero then there is a 50% chance8 it falls in the range −1 < δ < 1,
an approximately 70% chance that it falls in the range −2 < δ < 2, and so on according to the unit
Cauchy distribution. It is this commitment to particular ranges of values being more probable
than others—if the true effect size is nonzero—that allows us to calculate the likelihood of the
data under the alternative hypothesis.

One item of potential confusion here is whether the prior on effect size constitutes the
alternative hypothesis itself, or just represents additional prior information. Either interpretation
is possible, but we suggest regarding a nondirectional alternative hypothesis as stating only that
the effect is non-zero, with the prior on effect size representing additional (separate) prior
information about which effect sizes are probable if the effect is nonzero. Treating the prior
on effect size as constituting the alternative hypothesis complicates the interpretation of the
results substantially; see Williams (2017).

Bayes Factors and Posterior Probabilities

A Bayes factor is not itself a statement about the posterior odds that a particular hypothesis is
correct. However, the Bayes factor comparing a null hypothesis and an alternative hypothesis is
the crucial link between the prior odds that the alternative hypothesis is correct and the posterior
odds that it is correct, taking into account the data observed. If we multiply the prior odds by the
Bayes factor BF10, the result is the posterior odds.

Posterior odds10 ¼ PðH1jDataÞ
PðH0jDataÞ ¼

PðH1Þ
PðH0Þ �

PðDatajH1Þ
PðDatajH0Þ

In a sense, the Bayes factor shows not what we should be believe, but how much the set of
data should change our minds; Lavine and Schervish (1999) call Bayes factors “measures of
change in support” (p. 120). However, if we are willing to specify the prior odds—how plausible
we think the alternative hypothesis is in comparison to the null before seeing the data—then we
can easily translate the Bayes factor to the posterior odds. The posterior odds indicate how much
more probable one hypothesis is than another, given our prior odds and the data observed.

8 The Cauchy distribution has two parameters (location and scale), the values of which are 0 and 1, respectively, in
the unit Cauchy distribution. The first quartile of a given Cauchy distribution occurs at location - scale, and the third
quartile falls at location + scale.
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Furthermore, if our prior beliefs were that the null and alternative were equally probable (a prior
odds of 1), the Bayes factor BF10 is itself the posterior odds that the alternative hypothesis is
correct. And we can go one step further: Provided that the sum of the prior probabilities of the
two hypotheses sum to one (i.e., provided that we do not consider any other models to be
plausible), the posterior probability that H1 is correct can also be calculated simply as:

PðH1jDataÞ ¼ Posterior odds10
Posterior odds10 þ 1

The Advantages of Bayes Factors

Bayes factors have several valuable characteristics that may attract researchers to this approach
to analysis.

First and foremost, a Bayes factor analysis makes it clear when a set of data provides
evidence increasing the credibility of the null hypothesis. This stands in contrast to a nonsigni-
ficant p value, which indicates only the absence of evidence against the null, rather than
evidence for it (at least when used within the standard hybrid NHST framework). This means
that Bayes factor analyses are an informative method for communicating statistical findings in a
wider range of conditions than are NHST analyses.

Second, a Bayes factor analysis can provide a basis for a direct and intuitive communication
of statistical uncertainty—if the researcher uses the Bayes factor to calculate the posterior
probabilities (or at least posterior odds) for the models compared. A posterior probability directly
indicates the probability that a hypothesis is correct given the priors specified and data observed.
This said, Bayes factor analyses can admittedly only facilitate clear communication about
uncertainty if users are willing to report Bayes factors and posterior odds or probabilities in a
manner that transparently communicates uncertainty. Using Bayes factors but relying too heavily
on simplistic dichotomous decision rules (e.g., BF > 3 = support the alternative hypothesis)
could lead to a reporting of uncertainty that is just as unsatisfactory as that found in NHST (see
Gigerenzer & Marewski, 2015; Kruschke & Liddell, 2017).

Finally, a major practical benefit of using a Bayes factor analysis is that optional stopping—
for example, collecting data, checking whether the resulting conclusions are decisive, and if not
continuing to collect data—is acceptable in this approach. Indeed, the fact that optional stopping
can be conducted without harming the interpretation of the resulting statistics means that Bayes
factor analyses can be significantly more practically efficient, allowing for conclusions about the
presence of an effect to be drawn based on smaller samples than in NHST (see Schönbrodt,
Wagenmakers, Zehetleitner, & Perugini, 2015).

APPLYING BAYES FACTOR ANALYSES

One of the more substantial obstacles to using Bayesian analysis is the perceived accessibility of
Bayes-capable statistical software. The most common packages for performing Bayesian analy-
sis typically require some familiarity with programming code in a text-based interface. The
belief that Bayesian analyses are only achievable through the use of advanced programming
environments like R is no doubt responsible for some researchers’ decisions to continue using p
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values generated by more easy-to-use graphical user interface statistical packages like SPSS.
Fortunately, recent times have seen the development of many easy-to-use interfaces for calculat-
ing Bayes factors associated with many common test statistics. These easy-to-use interfaces help
to make analyses using Bayes factors an accessible tool for Bayesian hypothesis testing.

One of the most accessible statistical programs to implement Bayes factors in recent years is
JASP (JASP Team, 2016): a free, open-source, cross-platform statistical analysis program
designed to conduct frequentist and Bayesian analyses through a simple graphical user interface.
Similar to familiar packages like SPSS, the JASP user selects his or her analyses through drop-
down menus and refines analysis options by clicking radio buttons and check boxes. JASP
allows users to quickly conduct frequentist and Bayes factor analyses on the same data,
providing a nice way to compare and contrast the two inferential approaches.

An even simpler method for the novice Bayesian to get familiar with Bayes factors is using
an online calculator that directly converts frequentist test statistics to Bayes factors. Jeff
Rouder’s Perception and Cognition Lab website at the University of Missouri hosts online
Bayes factor calculators for t tests, regression, and binomial observations at http://pcl.missouri.
edu/bayesfactor. Each of these calculators merely require a user to provide information that is
commonly reported in a published frequentist analysis (e.g., the test statistic and sample size),
and the calculator provides a Bayes factor in favor of the alternative hypothesis (BF10).

Nevertheless, despite the availability of easy-to-use software to perform Bayes factor ana-
lyses, there do remain several important (and potentially difficult) decisions to make as part of a
Bayes factor analysis.

Specifying Priors

As mentioned above, one important decision when specifying a Bayes factor test of a null
hypothesis is that of selecting the prior on the parameter(s) of interest, indicating which effect
sizes are more and less plausible if the true effect is not exactly zero. Default priors for a number of
common analyses have been proposed in the literature and implemented in software such as JASP.
For example, a Cauchy distribution centered on zero with a scale parameter of

ffiffiffiffiffiffiffiffi
2=2

p
, that is,

Cauchy (0, 0.707), has recently been suggested as a prior for the standardized mean difference δ in
the Bayesian t test (Morey, Rouder, & Jamil, 2015); a stretched symmetric beta prior equivalent to
a uniform prior between −1 and 1 has been suggested for a correlation (Ly, Verhagen, &
Wagenmakers, 2016); and a Cauchy (0, 1) prior has been suggested for standardized regression
coefficients (Rouder & Morey, 2012). Most of these priors broadly incorporate the idea that in
psychology, effect sizes closer to zero are more plausible than those very far from zero.

While the default priors available provide a starting point, a researcher should select a prior that
reasonably represents existing knowledge about which values of the parameter are most probable
if it is not exactly zero in size. A Bayes factor necessarily relies on informative priors, and these
priors should be selected carefully; Bayes factors can be very sensitive to prior specification (see
Liu & Aitkin, 2008). Morey, Wagenmakers, and Rouder (2016) suggest using priors that “approx-
imate what a reasonable, but somewhat-removed researcher” might believe (p. 18). One way to
specify a prior is by using information about average effect sizes in the discipline of interest: For
example, a researcher conducting a social psychology study to be analyzed via a Bayes factor
alternative to the t test might be aware that the average effect size in social psychology is about
r = .21 (Richard, Bond, & Stokes-Zoota, 2003), which is roughly equivalent to d = .43. They
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might thus wish to place a Cauchy (0, 0.43) prior on the standardized mean difference δ. This prior
effectively says that if the null hypothesis is false, then there is a 50% chance that the absolute true
effect size is greater than the average effect size in psychology. Admittedly this prior specification
still probably places more credibility on large effect sizes than is really warranted, given that the
effects summarized in Richard et al. (2003) are no doubt subject to some publication bias. This
specification nevertheless gives less weight to large effect sizes than do “default” Bayes factor
priors, which typically place quite high probability on very large effects.

Fortunately, while there may be unavoidable ambiguity about which prior on effect size to select,
JASPmakes it easy to produce a plot showing how the Bayes factor changes if wemake the prior more
or less spread out (i.e., giving more or less weight to large effect sizes). This allows the researcher to
demonstrate and plot how robust his or her conclusions are to some alternative choices of prior (see
Grange, Kowalczyk, & O’Loughlin, 2016 for an example). Furthermore, though priors do not become
invalid if they are specified after data collection, preregistering a particular choice of prior on effect size
(and prior odds on the hypotheses themselves) can be a useful strategy: Doing so reassures the reader
that the priors were not amended after viewing the data in order to produce a particular conclusion (see
Wagenmakers et al., 2012, for an introduction to the idea of pre-registration).

Directional Priors on Effect Size

Oftentimes, a researcher will hypothesize not only that a relationship exists, but also that it
exists in a particular direction (e.g., that a correlation between two variables is positive rather
than negative). It is possible to specify a Bayes factor analysis in which the point null hypothesis
is compared to a directional alternative, and this specification can easily be requested in JASP
and the BayesFactor R package (Morey et al., 2015). For example, a directional alternative
hypothesis in the Bayesian t test case in JASP is a half-Cauchy (0, 0.707) distribution. That said,
a Bayes factor produced from a directional hypothesis test does not take into account the
possibility that the true effect could lie in the opposite direction to that hypothesized and
therefore cannot be as straightforwardly converted into a posterior probability.

It is worth stressing here that the directional form of the Bayes factor test that is readily
available in JASP and the BayesFactor package compares a directional hypothesis to a point
null. In cases where the researcher is simply aiming to determine whether an effect is positive or
negative (and can reasonably exclude an exactly zero effect), a Bayes factor approach can be
employed, but at the time of writing doing so currently requires a little more programming work
from the user (see Rouder, 2016). This type of purely directional question can also be addressed
quite easily using a Bayesian estimation approach, as we discuss later in the article.

Interpreting and Reporting the Results of a Bayes Factor Analysis

As mentioned above, though a Bayes factor does not directly indicate the posterior odds of the
hypotheses tested, it can readily be converted to a posterior odds if the researcher willing to
specify the prior odds. The prior odds indicates the relative credibility of the null and alternative
hypotheses prior to observing the data at hand.

Some advocates for Bayes factor analysis (e.g., Rouder, Morey, Speckman, & Province,
2012) suggest not dictating to the reader a particular choice of prior odds. Instead, Rouder et al.
(2012) suggest allowing readers to select and update their own priors using the reported Bayes
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factor (thus leaving the final conclusion to the reader), or showing how the posterior odds vary
across a range of different choices of prior odds. While in an ideal world the former strategy
would make sense, it relies on an optimistic view of the reader’s knowledge. For developmental
researchers, who may often be writing for audiences with limited statistical expertise, we would
gently suggest that reporting the Bayes factor alone and leaving the reader to update their own
priors (and calculate posteriors) is probably asking too much of the reader.

Others authors suggest qualitatively interpretingBayes factors themselves rather than producing and
interpreting posterior odds or probabilities at all (an approach that sits in the middle ground between
frequentist and Bayesian analysis; see Perezgonzalez, 2016 for a critique). For example, Wetzels et al.
(2011) suggest a variation on a scheme initially proposed by Jeffreys (1961), in which a Bayes factor of
between 1/3 and 1 represents “anecdotal evidence for H0”, a Bayes factor >100 represents “decisive”
evidence for H1, and so forth (p. 293). There is again reason to be cautious of such schemes: The
qualitative interpretation of Bayes factors tends to convey the idea that the Bayes factor is the final
product of such an analysis, and that it can directly inform us which hypothesis is correct. However, the
Bayes factor itself doesn’t take into account the prior probabilities of the two models: A “decisive”
Bayes factor of 100 in favor of amodel would not be a basis to favor themodel at all if the prior oddswe
had placed on themodel was less than 1/100. Furthermore, relying on a Bayes factor as the end point of
the analysis fails to convey uncertainty or risk of error very clearly: Such an analysis lacks the direct
statement of uncertainty communicated in a Bayesian posterior probability (which directly indicates the
probability that a conclusion is correct, conditional on priors and data), while not committing to a fixed
rate of error, conditional on the null hypothesis being true (as in NHST; see Mayo & Spanos, 2011).

Rather than reporting the Bayes factor alone, we suggest the researcher should select a
reasonable prior odds to place on the alternative hypotheses—or perhaps a range of reasonable
choices of prior odds as in Rouder et al.’s (2012) second suggested option. The researcher can
then report the resulting posterior odds (or posterior probabilities, if the hypotheses tested can
reasonably be assumed to cover all possibilities).

Two final notes about reporting: First, researchers reporting Bayes factor analyses should
include estimates of effect size: A Bayes factor itself does not communicate the size of an
effect. Second, we strongly suggest that when reporting a Bayes factor analysis—or any data
analysis—the underlying raw data should be posted in an openly accessible location online
unless there exists some genuine ethical or legal impediment to doing so. Among other
things, doing so allows other researchers who would prefer to see a different form of data
analysis (e.g., a frequentist analysis) to check the robustness of the findings when using their
preferred method.

EXAMPLE OF A BAYES FACTOR ANALYSIS

The use of a Bayes factor analysis in development research can perhaps be best demonstrated
by example. For such an illustration, we can use Koechlin, Dehaene, and Mehler’s (1997)
replication and extension of Wynn’s classic (1992) study claiming to find evidence of
arithmetic abilities in infants. In Koechlin et al.’s study, each infant was shown a tray with
either one or two objects on it. A screen was then raised, obscuring the infant’s view of the
existing object(s).The experimenter then visibly either added another object to the tray, or

330 WILLIAMS ET AL.



removed one, with the tray itself concealed from the infant. Following this, in some trials (the
“impossible” condition), one of the objects left sitting on the tray was surreptitiously removed,
or an extra object surreptitiously added, completely out of view of the infant. The screen was
then removed, giving the infant a view of a number of objects that was either consistent with
the addition or subtraction of objects they had observed (possible condition), or not (impos-
sible condition).

Perhaps the most important analysis in Koechlin et al.’s study is a within-subjects ANOVA
showing that infants looked longer at the objects in the impossible condition, F(1, 25) = 11.60,
p = .002, suggesting that the infants were surprised when seeing an outcome at odds with the
arithmetic operations they had observed. An F statistic with df1 = 1 is in fact just the square of a
Student’s t statistic, so this test is equivalent to a paired t test, t(25) = 3.41, p = .002. We can
convert this t test into a Bayes factor using the online calculator provided at http://pcl.missouri.
edu/bayesfactor, but to do so we first need to select a choice of priors.

Given that the Koechlin et al. study is a replication, we have a handy source of prior
information on effect size: the original Wynn (1992) study. With data combined across her
experiments 1 and 2, Wynn reported that the preference (in terms of length of gaze) for a
display of two items was larger in a group of infants for whom this outcome was
“impossible” given the arithmetic operations they had observed, with t(46) = 2.73. This
implies a large standardized effect size d of about 0.79. It thus seems reasonable to place a
Cauchy (0, 0.79) prior on effect size. This prior suggests that (provided the true effect is
nonzero), there is a 50% chance that it is greater than 0.79 in absolute value. In addition to
the prior on effect size, we should also select a prior odds indicating the relative credibility
of the null and alternative hypotheses themselves. Given the presence of prior research
suggesting that an effect exists in this case, it might be reasonable to use a prior prob-
ability in favor of the alternative hypothesis. This said, the small sample size and
obviously flexible data collection procedure in the original Wynn (1992) study hardly
provides a strong basis for belief, so here we might specify a prior odds of 2:1, that is,
odds mildly in favor of the alternative.

Given the above prior on effect size, it transpires that the Bayes factor in favor of the
alternative hypothesis based on this data is 17. This means that the data observed should
increase the credibility of the alternative hypothesis (in comparison to the null) by a factor of
17. However, the posterior odds that the alternative hypothesis is correct depends of course on
the prior odds we placed on the alternative hypothesis being correct: The prior odds we selected
in this case were 2:1 in favor of the alternative. The evidence collected shifts these prior odds to
2*17 = 34:1, or a posterior probability of 34/(34 + 1) = 97%. In other words, given the priors
and auxiliary assumptions specified, and assuming the integrity of the data observed, there is a
97% probability that the true effect estimated in this study is nonzero.

We can also test the robustness of our conclusions to alternative choices of prior on effect
size. Figure 1 shows how the Bayes factor produced by this analysis differs depending on the
scale parameter set in the Cauchy prior on effect size (which dictates how spread out the prior
is). As is visible in the figure, the data increase the credibility of the alternative hypothesis by a
factor of at least 2:1 regardless of the choice of prior scale, although the Bayes factor is smaller
for choices of prior that place more weight on small effect sizes.
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TESTING POINT NULL HYPOTHESES USING BAYESIAN ESTIMATION (ADVANCED
MATERIAL)

Although we have stressed the Bayes factor approach (rather than Bayesian estimation/modeling) as
a suitable method for testing point null hypotheses, it is important to recognize the fact that it is
entirely possible to test point null hypotheses within the more general framework of Bayesian
estimation. Practically speaking, the simplest way to do this is to set up a model to estimate a
particular effect (and include a prior on the effect size) but then add a parameter that indicates
whether the effect size parameter should take a value of zero. We might term this latter toggling
parameter an “H1” parameter. We can then place a Bernoulli prior distribution onH1 and indicate our
prior belief that the parameter is nonzero in size as the Bernoulli parameter. For example, a Bayesian
estimation analogue to the Bayes factor t test available in JASP might be specified as such:

y1;i , Normal μ; σ2
� �

y2;i , Normal μþ H1δσ; σ2
� �

πðμÞ / 1

πðσÞ / 1

σ2

H1 ,Bernoulli 0:5ð Þ

δ,Cauchyð0; 0:707Þ
Where,

y1;i = the 1. . .n data points on the dependent variable in group 1.

y2;i = the 1. . .m data points in group 2.

FIGURE 1 A robustness check showing how the Bayes factor varies
depending on the prior on effect size.
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μ = the mean of the dependent variable in group 1, upon which we place an improper uniform prior.
σ2 = the within-group variance, upon which we place a Jeffrey’s prior.
H1 = a parameter used to determine whether the two means are different; the Bernoulli model

prior used here suggests that there is a 0.5 probability that the means are different.
δ = the standardized difference in means (conditional on the true difference being nonzero),

upon which we place a Cauchy prior with a location parameter of 0 and scale parameter of 0.707.
The basic set-up described here is drawn on and extended in Bayesian methods for variable

and model selection (see O’Hara & Sillanpää, 2009). When the model above is estimated using a
set of data, the posterior mean for the parameter H1 indicates the posterior probability that a

mean difference actually exists. We can also use the formula BF10 ¼ PðH1¼1jDÞ
1�PðH1¼1jDÞ to extract the

posterior odds, which will be approximately the same as that produced by conventional Bayes
factor analysis. However, this Bayesian estimation analysis provides more than just the posterior
odds: It also provides full posterior distributions for all the parameters in the model. We have
provided an implementation of the above analysis as a web application at https://rasmusab.
github.io/bayes-null-ttest-app/ which we discuss further below.

TESTING HYPOTHESES ABOUT REGIONS OF PRACTICAL EQUIVALENCE

As discussed above, Bayes factors have some advantages over p values as a method for testing a
point null hypothesis. The Bayes factor approach also allows researchers without strong
computational skills to use Bayesian methods without grappling with the challenges that
Bayesian estimation can involve, especially when applied to the testing of point null hypotheses.

One important feature of Bayes factor tests—at least as implemented in software such as
JASP and the BayesFactor package—is that they implicitly treat a null hypothesis of an
exactly zero value as being particularly plausible. In some research scenarios, a point null
hypothesis could indeed be plausible and worth testing. Indeed, the substantive hypothesis
under consideration might sometimes be that a particular effect is zero. For example, Loehlin
(2007) discusses “the original hypothesis c2 = 0” (p. 152)—that is, the hypothesis that the
effect of shared family environment on behavioral traits in adulthood is zero. If we take
Loehlin’s framing of this hypothesis literally, a Bayes factor comparison of a point null and an
unrestricted alternative hypothesis would be a suitable way to test it. In other cases, the
substantive hypothesis the researcher wishes to test might not take the form of a point null, but
there could still be good reason to expect an exactly zero effect. Bem’s infamous (2011) study
of human “precognition” provides a good example, in that while Bem was attempting to
provide evidence for the alternative hypothesis, our standard understanding of space and time
is good reason for a prior belief that the true effects in his experiment were all exactly zero in
size.

These examples aside, it is important to stress that statistical inference does not have to take
the form of testing point null hypotheses, and there may often be little reason to regard a point
null as plausible. In the developmental research context, a researcher interested in a particular
effect or relationship might well believe that this effect or relationship could be large or small,
positive or negative, but see no particular reason to believe that it is exactly zero in size.
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As an example of a case where a point null hypothesis would be implausible, Brose,
Schmiedek, Lövdén, Molenaar, and Lindenberger (2010) conducted a study of the relationship
between working memory performance and motivation (across and within subjects). For a given
individual or population of individuals, we might have some uncertainty about the exact size or
even the direction of the correlation between these two variables. But there would seem to be
little reason to assume that the relationship between working memory performance and motiva-
tion would be exactly zero in size. After all, a correlation between these two variables could
occur via any of a huge number of mechanisms: Via an effect of working memory on motiva-
tion, via an effect of motivation on working memory, or via the shared effect of any of a vast
array of potential third variables. In such a context there exists little reason to place positive prior
probability on a point null hypothesis of an exactly zero relationship.

The Bayes factor approach can allow for the testing of hypotheses other than a point null
(see for example Morey & Rouder, 2011). However, when doing so, the benefits of a Bayes
factor approach over Bayesian estimation become less obvious: The key advantage of a Bayes
factor approach is that it allows the user to test a point null hypothesis using a Bayesian
framework while working within an easy-to-use computational structure. In situations where
we don’t have any reason to place positive prior probability on an effect size of exactly zero, a
single continuous prior can be specified for each parameter. This greatly simplifies the
application of Bayesian estimation.

A form of inference using Bayesian estimation that may be particularly useful to developmental
researchers is the estimation of a posterior probability distribution that has a defined region of practical
equivalence (a ROPE). An analysis using a ROPE can allow the researcher not just to determine the
probable direction of an effect, but also whether it is negligibly small in size. A ROPE analysis is
essentially a Bayesian alternative to a frequentist equivalence test (see Schuirmann, 1987).

In a ROPE analysis, we first define some interval of effect sizes that we consider to be
practically equivalent to no effect (e.g., a standardized mean difference δ in the range −0.1 to
0.1). We then define a prior for the parameter, estimate the posterior probability distribution, and
use the posterior distribution to reach a decision. In Kruschke’s (e.g., Kruschke, 2011, 2013;
Kruschke & Liddell, 2017) application of the ROPE approach, the decision rule is this: We support
the null hypothesis if and only if the 95% highest density interval (HDI; i.e., the 95% most
credible values) falls within the ROPE. As a slightly different alternative to Kruschke’s HDI-based
decision rule, it is also possible to base a decision on whether to support the null directly on the
mass of the posterior distribution falling into the ROPE. In other words, on the basis of a ROPE
analysis we can calculate the posterior probability that the true effect falls within the ROPE (as
well as the probability that it falls above it or below it). Doing so directly and intuitively
communicates the quantity of uncertainty about whether the true effect falls within the ROPE.

The web application we mentioned above (https://rasmusab.github.io/bayes-null-ttest-app/) in fact
not only allows a researcher to use Bayesian estimation to test a null hypothesis that the standardized
difference between two means is exactly zero in size but also to test whether this standardized mean
difference is negligibly small in size. This is accomplished by allowing the researcher to place a prior
probability on the difference being exactly zero in size and also to specify a region of practical
equivalence or ROPE. The model specification for this app is that described in the “Testing Point
Null Hypotheses using Bayesian Estimation” section above, but with the addition of a region of
practical equivalence.
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CONCLUSION

For researchers in human development, the testing of hypotheses via Bayes factors represents an
appealing alternative to NHST for hypothesis testing. Bayes factors allow one to clearly commu-
nicate the degree to which a set of observed data changes the credibility of one hypothesis in
comparison to another. Easy-to-use programs like JASP also make Bayes factor analysis more
accessible than full-blown Bayesian estimation, especially for researchers looking to test point null
hypotheses. We have stressed, however, that not all statistical problems necessarily need to involve
the testing of a point null hypothesis. When researchers wish to test other hypotheses (such as
whether a parameter is positive rather than negative, or substantial rather than negligibly small),
Bayesian estimation may be a more suitable and general framework to work within.
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