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2. Introduction

Musical rhythm is a human universal (Brown, 1991), and while there are
cultural differences with respect to tempo, meter and instrumentation,
all cultures have musical rhythm in some form (Stevens, 2012). Already
newborn infants have a sense of rhythm (Honing et al., 2009) and there
is only one reported case of beat deafness (Phillips-Silver et al., 2011),
which can be compared to the many reported cases of tone deafness Patel
et al. (2008). Appreciation and production of musical rhythm is part of
what it means to be human1 and, as with other human traits, there has
been a large research effort to understand: Why, in the ultimate sense,
do we have a sense of rhythm? How does it work? And what can it do?

Why humans appreciate musical rhythm, and music in general, is
much debated but little agreed upon (Patel, 2006; Pearce and Rohrmeier,
2012). One question is: If appreciation of musical rhythm gives such an
evolutionary advantage why is it not found in many more species? Or
as put by Fitch (2012):

The paradox, put simply, is this: if periodicity and entrain-
ment are ubiquitous features of all living organisms, why
can’t dogs dance?

It might be the case that musical rhythm and rhythmic entrainment does
not give an evolutionary advantage, but then the question becomes:
Why have humans evolved the capacity for music and rhythm? One

1This is not to say that rhythm is not part of what it means to be a cockatoo, one
other species that has shown a sense of musical rhythm (Patel et al., 2009). Many other
bird species also react to musical rhythms (Schachner et al., 2009) and sea lions have
been trained to move to beat of songs (Cook et al., 2013). Curiously, primates do not
show a strong sense of rhythm (Merchant and Honing, 2013; Honing et al., 2012). Even
though there are published reports of synchronization behavior in chimpanzee (Yu and
Tomonaga, 2015), the evidence for that primates have a sense of rhythm is far from as
compelling as for cockatoos.

11
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explanation is that music and rhythm are side effects of the human
capacity for language, with music being supernormal stimuli or, as
Pinker (1997) puts it, “auditory cheesecake”. This theory has been
criticized (Levitin and Tirovolas, 2009) and other proposals are that
musical ability is the result of sexual selection (Miller, 2000) or that the
evolutionary benefit of musical rhythm is to help synchronizing motor
activity on the group level (Merker et al., 2009).

How humans can perceive and produce musical rhythm is another
area of research focused on cognitive modeling and on establishing
plausible neurological mechanisms. Models can range from statistical
models of specific tasks, such as keeping the beat to a metronome, to
models aiming at describing mechanism general to the processing of
musical rhythm (Grondin, 2010). There is also a large literature on the
neural correlates of listening to and producing musical rhythms (see
Grahn, 2012, for a review).

In order to understand why a capacity exists and how it works, it
can be useful to investigate what that capacity can do and how it is
limited. A well known example of a study on limitations is Miller’s
(1956) “The magical number seven, plus or minus two”, which describes
the limitations of short-term memory and, by doing this, constrained the
possible answers to how short-term memory could work. With respect
to musical rhythm, two possible questions are: What type of responses
are made to rhythmic stimuli and what type of sounds are perceived
as rhythmical? Asking these type of questions has a long history in
experimental psychology where early examples of studies focusing on
rhythm production are Stevens (1886), Miyake (1902), Dunlap (1910),
and Woodrow (1932). These early examples all used versions of a
sensorimotor synchronization finger tapping task, which implies that motor
responses, here finger taps, are synchronized to sensory stimuli, often
metronome sequences. The focus in these and similar papers are often
on performance: how well participants can perceive and reproduce a
rhythm under different conditions, exploring under what circumstances
the human sense of rhythm works, and under what circumstances it
deteriorates. There is also a long tradition of introspective studies that
investigates how different rhythms are experienced (e.g., Bolton, 1894;
MacDougall, 1903 ).

Here it might be suitable to introduce the term rhythm perception as
an umbrella term for a number of capacities related to musical rhythm.
Rhythm perception can be seen as a subcategory of time perception and
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refers to capacities such as the perception of tempo, meter, intervals
and rhythmic phrases. This thesis does not touch on the why of rhythm
perception, but mainly focuses on the what and, to a lesser degree, on
the how. Rhythm perception is a vast subject and what questions I have
chosen to explore has been guided by where I have found the literature
wanting2.

The main research question of this thesis is: What happens with
rhythm perception when the tempo is slow? What could be considered
a slow tempo depends, of course, on the context and is relative to what
would be considered a conventional tempo. As most contemporary
music has a tempo faster than 60 beats per minute (van Noorden and
Moelants, 1999), a rhythm with more than a second between each beat
would be considered slow in most contexts.

A secondary research question has been: What is the slower limit
of rhythm perception? This question, in the same vein as Miller (1956),
is concerned with a perceptual or cognitive limit. If the slower limit of
rhythm perception was known, it would put a constraint on what mech-
anisms rhythm perception might depend on and why, in the ultimate
sense, humans have acquired a sense of rhythm.

Connected to these two questions is the question: What type of
model can account for a slower limit of rhythm perception and partic-
ipants’ responses to slow rhythms? This question led me to explore
the resonance theory for rhythm perception developed by Large (2008),
which is a flexible framework that can explain many phenomena related
to rhythm perception.

This thesis introduction continues with an overview of basic con-
cepts related to musical rhythm in section 2.1. Section 2.2 reviews how
rhythm perception can be measured and describes the construction
of the tapping board that was used to record rhythmic finger tapping
data in papers I, IV, V, VI and VII. A reason for collecting rhythmic
finger tapping data is often to get a measure of timing performance

2This thesis is also very much rooted in the literature on rhythm perception and
production, and in the literature on sensorimotor synchronization (I have read and
reread the comprehensive reviews of Repp, 2005 and Repp and Su, 2013 numerous
times). These directions of research are often not so much focused directly on studying
rhythm in music. While the the ultimate goal might be to understand the psychology of
music, the focus is more on studying human performance in more simplified rhythmic
tasks, where the isochronous finger tapping task is one often employed experimental
paradigm. Therefore, the papers in this thesis will make relatively few direct connec-
tions to music as such, even though I hope the results presented herein will add to the
understanding of the psychology of music.
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and section 2.3 introduces the asynchrony standard deviation as such a
measure. Section 3 describes the contribution of this thesis and puts
it into context. Finally, section 3.5 reviews a number of methods for
probing a slower limit of rhythm perception. My contribution, with
respect to a slower limit of rhythm perception, is summarized in figure
3.6.

2.1 Basic concepts of musical rhythm

Four basic concepts of musical rhythm are rhythm, beat, meter and tempo
(McAuley, 2010).

Rhythm

In the field of music cognition rhythm refers to the temporal organi-
zation of sounds and silences. No cyclical or hierarchical structure is
implied, which is different from how the term rhythm is used in other
fields (cf. circadian rhythm). A distinction can be made between rhythm
as the temporal pattern of sound and rhythm as the perception of a tem-
poral pattern of sound. An important aspect of the latter is the grouping
of the rhythm: how the series of sounds are perceived to be clustered
together. The grouping of a rhythm is a complex phenomena that is
affected not only by the temporal organization but also by the intensity,
timbre, duration and tempo of the sound events (Handel, 1989).

Beat

In most types of music there is a perceived regularly occurring pulse,
the beat. The beat of a piece of music is what one would synchronize
hand claps or dance steps to. A point of confusion is that both a rhythm
that establishes pulses and a single pulse can be referred to as a beat,
therefore it is possible to speak of “the beats of a beat”. Sound events
often occur on the perceived beat and are then experienced as accented.
It is, however, not necessary that sound events occur on every beat; a
rhythm can evoke a strong sense of a beat while still leaving out many
sounds that would occur on the beat.
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Tempo

The tempo of a piece of music is the rate at which the beats occur. Tempo
is often given as the number of beats per minute (BPM). In experimental
psychology another common3 measure is the interstimulus interval (ISI)
or interonset interval (IOI) which define the length of the interval between
adjacent beats. For example, a tempo of 120 BPM corresponds to a
tempo with an ISI of 1/120 × 60 × 1000 = 500 ms. The perceived speed
of a song is heavily influenced by the tempo, but this relation is not
linear, and the perceived speed is also influenced by other aspects of
the rhythm, such as the event density (Madison and Paulin, 2010).

Meter

In the same way as tones in a song can be accented, a beat can be
accented, where some beats are given more emphasis and are perceived
as being more stressed. The hierarchical emphasis pattern of a beat is
called the meter. The base level of a meter is always the beat, above the
beat is the bar (or measure), where a bar often consists of 2-4 beats and
where the first beat in each bar is given more emphasis. Below the beat
level is a subdivision of the beat where the first part of each subdivided
beat is given more emphasis. An example of a meter is visualized in
figure 2.1, both by musical notation (A) and by the emphasis pattern (B).
Meter not only dictates how music is performed but is also a perceptual
phenomena. The hierarchical structure of a meter can be perceived even
if all sound events in a sound sequence are identical. This phenomena
is called subjective rhythmization or sometimes the tick-tock effect (Bolton,
1894; Bååth, In press).

2.2 Measuring rhythm perception

The different experimental tasks used to investigate rhythm percep-
tion can loosely be divided into listening tasks and production tasks. In
listening tasks the participant is presented with rhythmic stimuli, for
example, metronome sequences or musical excerpts and, after having
listened to a stimulus, gives some kind of judgment. This type of task

3This thesis introduction contains a number of claims, which are given without any
reference, that things are common. This should then be read as common in my experience.
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Figure 2.1: A visualization of the meter of the first two bars of Edvard
Grieg’s I Dovregubbens hall.

can often use experimental paradigms common in experimental psy-
chology such as forced choice tasks or Likert type questionnaires (as
in Geringer and Madsen, 1984 or Johnson, 1996). There are also many
studies that have combined listening tasks with neuroimaging tech-
niques like EEG and fMRI (for example, Nozaradan, 2014; Grahn and
Rowe, 2013).

Production tasks instead investigate how participants produce rhyth-
mic responses under various conditions. These type of tasks can inves-
tigate rhythm in directly musical contexts, such as the synchronization
between musicians in a string quartet (Wing et al., 2014) or the amount
of swing in jazz drummers as a function of tempo (Honing and De
Haas, 2008). There is also a category of, what could be considered as,
more artificial rhythm productions tasks which give up some ecological
validity in order to focus in on specific aspects of rhythm perception4.

One of the most common experimental paradigms when investigat-
ing rhythm production is the finger tapping task (Repp, 2005). This task
was introduced more than a century ago (see Stevens, 1886, for an early
example) and in its basic form a participant is asked to tap with his or
her finger in synchrony with an isochronous (evenly spaced in time)

4That a task involves rhythm production, does not imply that it does not involve
rhythm perception. Many rhythm production task are also rhythm perception tasks as
what rhythm a participant produces depends on what rhythm the participant perceives.
This is both the case for simple rhythm production tasks, like keeping the beat to
a metronome using finger taps, and more elaborate rhythm production tasks, like
synchronizing the tempo with which you play a tune to the tempo of the rest of the
orchestra. In the same way an artist exercises color perception when painting, as the
the artist has to relate to the colors in the emerging painting, a drummer can be said to
exercises rhythm perception when playing, as the drummer has to perceive and relate
to the rhythm of past sound events.
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sequence of sounds. There are many variation of this basic task. For
example, the amount of auditory feedback the participant is given can
be varied, the participant can tap on a surface or freely flex the finger
and the synchronization phase can be followed by a continuation phase
where the sound sequence is muted while the participant continues
tapping at the same tempo. This last modification is common when
trying to dissociate timing error from motor error using, for example, the
influential model of Wing and Kristofferson (1973).

Sensorimotor synchronization (SMS) is an umbrella term for rhythm
production behavior that involves the synchronization of some move-
ment to a predictable external event. Typical examples of SMS tasks are
walking to the pace of a drum and tapping to the beat of a metronome,
but also dancing to a piece of music or making music in an ensemble
could be considered as SMS.

Reliability and latency when conducting a finger tapping study5

In order to conduct a finger tapping study one needs an apparatus to
accurately play the sound sequence to the participant and to record
the timing of the participants’ taps. If one is interested in the relation
between successive taps, the recorded timing of the taps need high
reliability, that is, there should be a low amount of temporal jitter in the
recorded timing. If one is interested in the relation between the taps
and the sound onsets both the sound playback and the recorded timing
needs high reliability and low latency. A sound needs to start imme-
diately when playback is initiated and there should be no systematic
discrepancy between the timing of a tap and the recorded timing. An
example of the result of latency and jitter when recording timings in a
sequence of taps is given in figure 2.2.

One apparatus that plays sounds and records key presses is a stan-
dard personal computer (PC). It would be convenient to use a PC,
as they are readily available, but there are some issues that make it
problematic to directly use a PC in a tapping study:

• There can be considerable temporal jitter and latency when play-
ing sound through a PC. This of course depends on the brand and
setup, but using a standard Windows PC with a consumer grade

5This section, and the following, is an abbreviated version of Bååth (2011) which
describes the apparatus I constructed and used in papers I, IV, V, VI and VII.
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Figure 2.2: The result of latency and jitter when recording the timing of
a sequence of finger taps.

sound card can result in audio delays ranging from 10 ms to 250
ms depending on the CPU load (MacMillan et al., 2001).

• There can also be temporal jitter and latency in the registration of
key presses. I have not found a recent article that measures key
press latency but Lane and Ashby (1987) estimate it to around 6
ms on a first generation Macintosh computer.

• It is hard to measure latency and jitter and to separate key press
delay from sound delay. Wright et al. (2004) measured the key
press-to-sound delay on computers running Linux and MacOS,
and found delays ranging from 10 ms to 80 ms.

• Computer keyboard keys might not be ideal for tapping tasks.
It is not enough to just tap a keyboard key, it has to be pressed,
and most computer keyboard keys makes an audible “click” both
when pressed and depressed.

One common way of getting around the problem of the tactile feel of
keyboard keys, and to possibly decrease latency and jitter, is to use a
MIDI interface for sound playback and registration of participants’ taps.
This approach is common in the literature (see, e.g., Repp and Doggett,
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2007; Madison, 2001) but still suffers from the problem that it is hard
to measure delays in sound playback and tap registration. One reason
for why it is hard to know the delays in PCs and MIDI equipment is
that these are complex, non transparent systems where there are many
processes running simultaneously and where access to the hardware is
hidden behind layers of abstractions.

The construction of an accurate tapping board to record finger
taps

Another solution is to use a system that is simple, that is dedicated
to the task of playing sounds and registering taps, and where it is
possible to guarantee low upper bounds of the delays. Such a system
is the Arduino which is a open-source electronics prototyping platform
that includes, among other things, a 16 MHz processor, a USB port
and several input and output pins (Mellis and Banzi, 2007). Using the
Arduino remedies many of the problems with using a PC. A program
implemented on the Arduino runs close to the hardware and there is
no operating system that adds unpredictable delays. Because of this,
when using an Arduino, it is possible to achieve millisecond accuracy
when playing sounds and registering taps.

This section describes the construction of an Arduino based tapping
board. The tapping board was designed to be comfortable to use and
to register taps with millisecond accuracy. The on-board software was
designed to support two types of tasks: A standard tapping task where
a participant synchronizes his or her taps to an isochronous sequence of
sounds and a spontaneous motor tempo task where there is no pacing
signal and where the participant can tap at any tempo.

The apparatus consisted of an Arduino, a tapping board with an
attached piezo element, a standard 3.5 mm stereo jack and a small
breadboard that was used to connect the different components. The
tapping board consisted of a wooden wrist rest and a 5 cm2 tapping
pad of corrugated fiberboard that rested on a piece of plastic foam of
the kind commonly found in foam mattresses. This plastic foam also
provided a place to rest for the fingers not involved in the tapping.
Below the tapping pad was an attached piezo element that picked up
vibrations from the tapping pad. Fiberboard was chosen because it
was found to provide a hard surface while still having the elasticity to
mediate the taps to the piezo element. For a picture of a prototype of
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Figure 2.3: A prototype of the tapping board with all of the components
exposed. The piezo element is hidden below the tapping pad.

the tapping board see figure 2.3.
The Arduino was programmed to handle two types of common

rhythm production tasks: a standard SMS tapping task and a sponta-
neous motor tempo task (the source code can be found in the appendix
of Bååth, 2011). Initiation of the tasks and handling of the resulting data
is not done on the Arduino but has to be handled by a PC connected by
the USB port. When the tapping task is initiated the Arduino plays a
given number of square wave sounds with a given period and records
the timing and amplitude of the taps made on the tapping board. The
status of the piezo element is polled more than 10 times every ms. Each
sound is associated with one tap and that tap is time stamped at the
time of the peak amplitude reading in the time interval centered on the
sound onset with a width of the ISI of the sequence. This method of
defining a tap is a robust way of handling noise coming from the piezo
element.

In the spontaneous motor tempo task a given number of taps is
recorded without there being any pacing sequence. Here a tap is
counted as every reading with an amplitude higher than a given thresh-
old. This method of defining a tap is less robust and relies on that
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the threshold is carefully adjusted. If set too low, noise from the piezo
element will be counted as taps and if set too high, real taps will be
missed. After a tap there is a 200 ms period in which no tap will be
registered; this will limit the tapping rate to five taps per second.

Even if the Arduino guarantees a millisecond resolution both when
playing sounds and registering taps there is still a need to evaluate the
tapping board. A high speed camera (Sanyo Xacti VPC-HD2000) with
an update frequency of 600 Hz (that is, one frame every 1.7 ms) was
used to test the total delay of the system. A red LED was connected
to the Arduino and was programmed to light up as soon as the piezo
element registered a tap. When filmed with the high speed camera, the
tap onset and the lightning of the LED always occurred in the same
frame, so an upper limit to the latency and jitter of the tapping board
should be 1.7 ms.

2.3 Measures of sensorimotor synchronization per-
formance

When performing a study that includes an SMS task, for example, a
finger tapping task, the research objective is often to compare timing
performance between different experimental conditions (for example,
the difference between on-beat and off-beat tapping as in Vos and
Helsper, 1992) or between different groups (for example, the difference
between persons with cerebellar damage and a control group as in
Ivry and Keele, 1989). A third research objective can be to investigate
whether timing performance correlates with other capacities such as
intelligence (Holm et al., 2011) or working memory capacity (Bååth,
Submitted). These types of research objectives require the calculation
of a measure of performance for each participant and condition. This
section goes through some common measures, focusing on the common
case where the SMS task involves keeping the beat to an isochronous
metronome sequence.

Table 2.1 show data from the first ten sounds of a finger tapping
trial from Bååth and Madison (2012), collected using the tapping board
described in the previous section. Here the metronome sequence had
an ISI of 1200 ms and the participant was asked to start tapping as
soon as the sequence started. Sound onset and Tap onset are timestamps
given in ms since the beginning of the trial. Asynchrony gives the time
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Sound no. Sound onset Tap onset Asynchrony ITI
1 0 - - -
2 1200 - - -
3 2400 2384 -16 -
4 3600 3581 -19 1197
5 4800 4710 -90 1129
6 6000 5939 -61 1229
7 7200 7144 -56 1205
8 8400 8381 -19 1237
9 9600 9543 -57 1162
10 10800 10770 -30 1227

Table 2.1: An example of SMS data from the finger tapping task in Bååth
and Madison (2012). See section 2.3 for a description of the variables.

difference between the target sound onset and the tap onset, where a
negative asynchrony implies that the tap preceded the tone. ITI shows
the intertap interval, the time between adjacent taps. A dash in the Tap
onset column means that the participant did not make any response
to that sound. As it may take some time before the participant gets a
feeling for the rhythm of the sequence (hence the missing first two taps
in table 2.1) it is common to omit the first few onsets from each trial.
Figure 2.4 shows three different graphical representations of the trial
data.

Given a data set, such as that in figure 2.1, one can use the ITIs or
the asynchronies to calculate a measure of timing performance. In the
case where the task involved self-paced tapping there are no tone onsets
and only the ITIs are available. A measure of performance is then the
variability of the ITIs, where a low variability means that the partic-
ipant produced more consistent responses and so had better timing
performance. Here there are many possible measures of variability such
as the sample variance, mean absolute deviation or median absolute
deviation, but the conventional choice is to use the sample standard
deviation (SD). Even if the task involved externally paced tapping, it is
still possible to measure timing performance using the ITIs. However,
one can argue that using the asynchronies is more in line with the task –
to tap along to the sound sequence – as the asynchronies measure the
time difference between the sounds and the responses.

Asynchronies are often sufficiently close to normally distributed to
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be well summarized by the sample mean and the sample SD (Bååth,
2015a). The mean asynchrony, sometimes called the constant error, is
not a good measure of performance. As positive and negative asyn-
chronies will cancel out, a participant with wildly inconsistent responses
might still end up with a mean asynchrony that is small. However, the
mean asynchrony is a good measure of the tendency of a participant to
produce positive or negative asynchronies, and a well established result
is that under a wide range of conditions participants have a negative
mean asynchrony (Repp, 2005). This can also be seen in table 2.1 and
figure 2.4 where the taps tend to precede the sounds. To avoid that
the positive and the negative asynchronies cancel out, one could take
the absolute value of the asynchronies and calculate the mean absolute
asynchrony. This could be take as a measure of performance, however,
this measure will be confounded by that mean asynchrony tends to
be negative and by the considerable inter-individual difference in the
magnitude of the mean asynchrony (Aschersleben, 2002). For example,
a participant with perfect timing, but with a constant asynchrony of
-50 ms, would by this measure perform worse than a participant with
a mean asynchrony of 0 ms but with a 60 ms SD of the responses. A
solution is then to take the variability of the asynchronies as a measure
of performance, and again there are many possible measures of vari-
ability, but the conventional choice is to use the sample SD. The lower
right sub-figure in figure 2.4 show both the mean and the SD of the
asynchronies.

As the increase in timing variability is approximately linear within
a wide range of tempi (Grondin, 2012), the coefficient of variation (CV),
calculated as the SD of the asynchronies divided by the target interval,
can be used to compare timing performance between different tempo
levels (See figure 4 in Bååth et al. (Submitted) for an example of this
use). Further, it is possible to isolate components of timing variability
by using, for example, the model of Wing and Kristofferson (1973).

While the asynchrony SD is a direct measure of rhythm production
performance it is commonly used as a proxy measure of rhythm percep-
tion performance, that is, how well a participant perceives aspects of a
rhythmic stimulus. An example of this use is found in the paper Tapping
to Bach where Toiviainen and Snyder (2003) were interested in measur-
ing participants’ ability to find the pulse in different musical excerpts
taken from Bach’s fourth organ duetto (BWV 805). Participants were
asked to tap along to the perceived beat of the musical excerpts, and
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timing variability was used as a measure of how well the participants
perceived the beat.
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3. Rhythm perception and
rhythm production at slow
tempi

A main research question of this thesis has been: What happens with
rhythm perception when the tempo is slow? Related questions are here:
What is slow? And slow compared to what?

One approach is to first look at what ISIs could be considered a
moderate or a natural tempo. A result that has been replicated sev-
eral times is that when asked to freely tap out a regular rhythm at a
comfortable tempo, participants tend go for a tempo around an ISI1 of
500 ms (Moelants, 2002; Fraisse, 1982). There is, of course, a consider-
able difference between participants, where the resulting tempo, called
the spontaneous motor tempo, can range from ISIs of 300 to 800 ms
(McAuley et al., 2006). A tempo could then be considered slow when it
is considerably slower than the spontaneous motor tempo.

A less common task, that directly targets slowness, is the slow motor
tempo task. This is a variation of the spontaneous motor tempo task
in where participants are asked to tap out a regular rhythm as slowly
as possible while still being able to keep a regular beat. The tempi that
participants produce in this task have large variability, possibly as the
result of how participants interpret the task instructions, but on average
the slow motor tempo is in the neighborhood of an ISI of 2.5 seconds
(McAuley et al., 2006; Bååth, In press; Bååth, Submitted). The slow
motor tempo does not define which tempi could be considered slow,
but rather gives a point of reference for when a tempo can be considered
slow.

1What you measure is, strictly, the intertap interval (ITI). Here interstimulus interval
(ISI) is just used as a measure of tempo.

27
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Another approach is to look at what is considered a moderate tempo,
and what is considered a slow tempo, in a musical context. Van No-
orden and Moelants (1999) found that in a sample of music played on
the radio, the most common tempo had an ISI of 500 ms. This is very
similar to the spontaneous motor tempo and corresponds to 120 BPM
which would be denoted as Moderato2 using Italian tempo markings
(Randel, 2003). A tempo marking of Lento (slow) or Largo (broad) indi-
cates a tempo in the range 40 to 60 BPM corresponding to ISIs in the
range 1000 to 1500 ms. A tempo of 40 BPM is also the slow tempo limit
of many metronomes, and has been so since the advent of the modern
metronome. Here in the words of John Maelzels, the inventor of the
modern metronome, from his original patent of 1815:

Figure 3.1 shows a drawing of John Maelzels’s metronome from this
patent and the displayed tempo range, 50 to 160 BPM corresponding to
ISIs in the range 375 to 1200 ms, can be seen as an indication of the range
of tempi used in music3. This range also corresponds well with the
range of tempi in the sample of radio music collected by van Noorden
and Moelants (1999). There are, of course, music played at a slower
tempo than 40 BMP, where Larghissimo can denote a tempo slower than
Largo. An extreme example is Morton Feldman’s Last Pieces where part
III lack note durations and is to be played “very slow”, making it up to
the performer to choose what he or she considers to be a “very slow”
tempo. In a number of performances by different pianists the average
interval between the tones ranged from 1500 to 5000 ms (Moelants,
2001). Performing this piece is akin to performing a slow motor tempo
task in that it is up to the performer or participant to decide what “as
slow as possible” or “very slow” means. It is interesting to note that the
range of tempi in performances of Last Pieces part III (ISIs 1500 to 5000

2Moderato would in English be moderate and roughly corresponds the tempo of, for
example, Aretha Franklin’s Respect or Lady Gaga’s Poker Face.

3Modern metronomes, for example, those produced by Wittner GmbH, often extend
this to the range 40 to 208 BPM corresponding to ISIs 289 to 1500 ms.
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ms) and the range of tempi in the slow motor tempo task (ISIs 1500 to
6000 ms) (Bååth, Submitted) are very similar.

While no strong conclusions can be drawn from looking at the
motor tempo tasks and conventions in a musical context, the data can
be summarized as follows: Tempi in the neighborhood of an ISI of 500
ms could be considered neither fast nor slow, but moderate. A tempo
at an ISI of 1000 ms could be considered slow and a tempo at an ISI of
1500 ms could be considered as very slow.

There exists a host of phenomena and effects related to rhythm
perception, and there are many comprehensive reviews on the subject,
for example, Patel (2006), Desain and Windsor (2000) and Honing (2012).
Below I review a subset of phenomena which are more relevant to the
papers of this thesis.

3.1 Subjective experience of slow rhythms

My own subjective experiences of keeping the beat to sequences of
different tempi are the following: When the tempo is fast, say with an
ISI of 250 ms, I need to focus as it is difficult to motorically produce
such as fast rhythm by, for example, tapping with my index finger. At a
moderate tempo tapping feels automatic and effortless. Starting around
an ISI of 1000 synchronizing becomes gradually more demanding, re-
quiring attention and focus. At very slow tempi, e.g., at an ISI of 3000
ms, keeping the beat is very difficult; I have no feeling of a rhythm, and
I experience each tap as being the result of a deliberate decision.

My description of what it feels like to synchronize to a very slow
rhythm is similar to the description by Repp (2006). This description
is also in line with results that I presented at the 12th International
Conference on Music Perception and Cognition in Thessaloniki (Bååth
and Madison, 2012). I asked participants to tap along to metronome
sequences at tempi ranging from ISIs of 600 ms to 3000 ms, and to after
each trial rate the experienced difficulty. On average, participants rated
it as easy to synchronize at ISI levels 600 and 1200 ms, but rated it as
more and more difficult as the tempo approached an ISI of 3000 ms
(see figure 1 in Bååth and Madison, 2012). This increase in difficulty is
also mirrored in that, as the tempo goes from moderate to very slow,
performing rhythmic timing increasingly demands attentional resources
and involvement of cognitive control (Bååth et al., Submitted).

The increase in subjective difficulty and increasing demands on



30

Figure 3.1: A drawing of the “Metronome or Musical Time-keeper”
from the original metronome patent granted John Maelzel in 1815.
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Figure 3.2: The three levels of complexity of the stimuli in the study
conducted by Joel Olofsson.

attentional resources at slower tempi was seen in rhythm production
tasks. However, the motor component of finger tapping does not get
more difficult to carry out at slow tempi, if anything it should become
easier to carry out as there is more time to plan the actions. It is plausible
that these results instead have their basis in rhythm perception and that
perceiving the rhythm is what is getting more difficult at slow tempi.

That slow rhythms are perceived with less intensity can also be seen
in a data set collected by Joel Olofsson as part of his master thesis, which
I supervised. Thirty-two participants were asked to listen to a number
of rhythm sequences and rate “How much of a sense of rhythm do you
experience?”4 on a scale from 1 (“Experiences no sense of rhythm”) to 7
(“Experiences a strong sense of rhythm”). The rhythm sequences were
of different tempo, where the length of a bar was from 150 ms up to
3000 ms, and of different complexity, where the three complexity levels
are shown in figure 3.2. The result of the study is summarized in figure
3.3 which shows the mean rating for each type of rhythm sequence.
For the sequences of low complexity (1/1), the rated rhythmicity peaks
when the length of a bar is 408 ms, which is close to the preferred
tempo found in spontaneous motor tempo tasks (Moelants, 2002). As
the tempo gets slower the rated rhythmicity drops and at a bar length
of 3000 ms the mean rhythmicity is 2.0. The same pattern can be seen
in the more complex sequences (1/2 and 1/4), with the difference that
these sequences have higher overall mean rhythmicity and that the
drop in rated rhythmicity begins at longer bar lengths.

4This is a rough translation of the original question, given in Swedish, “Hur mycket
rytmkänsla känner du?”.
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Figure 3.3: The mean ratings of rhytmicity for all combinations of
complexity and tempo in the study conducted by Joel Olofsson.

3.2 Sensorimotor synchronization performance at
slow tempi

Timing variability, as measured by the SD of the asynchronies, increases
with slower tempi and over shorter tempo spans this increase is well
described by a linear function (Semjen et al., 2000). Over larger spans
the increase appears non-linear and has been better described by a
quadratic function (Repp and Doggett, 2007) or by an exponentially
increasing function (Bååth et al., Submitted; Bååth, Submitted).

While asynchronies recorded in SMS tasks tend to be approximately
normally distributed, this is not the case when the tempo is sufficiently
slow. Around an ISI of 1800 ms the distribution of the asynchronies
starts to become left-skewed and bimodal, and this gets more pro-
nounced at slower tempi (Mates et al., 1994; Miyake et al., 2004; Bååth,
2015a). An example of this is shown in figure 1 in Bååth (2015a). The
reason for this increasing non-normality is that participants start to
produce reactive responses, that is, instead of anticipating the upcoming
tone onset, participants react to it producing what looks like auditory
reaction time responses. This behavior has been interpreted as resulting
from a deliberate shift in participants’ strategy when synchronizing
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to slow rhythm sequences (Miyake et al., 2004). However, it has been
shown that a change in strategy is not necessarily implied, as this behav-
ior can also be explained by that participants’ synchronization errors
become so large so that the target tone is regularly missed and instead
reacted upon (Repp and Doggett, 2007; Bååth, 2015a).

Independent of the cause of the reactive responses, it can be shown
that standard estimators of the mean and SD of the asynchronies are
biased towards too low estimates. That is, by using the standard esti-
mators it will appear that participants have more negative mean asyn-
chronies and lower tapping variability than what is warranted by the
data. This is a problem if one wants to investigate rhythm production
and rhythm perception at slow tempi (ISI > 1800 ms). A solution to this
problem was presented in Bååth (2015a) and involved using a problem
specific Bayesian model, which was subsequently used to calculate
timing variability in Bååth (Submitted) and Bååth et al. (Submitted).

3.3 Rhythm perception, auditory working memory,
and executive function

It has been suggested that time perception is solely dependent on mem-
ory traces in working memory (Lewis and Miall, 2006). As auditory
stimuli dominate over other type of stimuli both in the temporal do-
main in general (Ortega et al., 2014), and with respect to rhythm percep-
tion (Barakat et al., 2015; Repp and Penel, 2002; Glenberg et al., 1989),
a reasonable speculation is that audiory working memory and rhythm
perception should be related. One would especially suspect a correla-
tion between the temporal capacity of auditory working memory and
rhythm production performance at slow tempi. A motivation for such
a correlation would be that if rhythm perception depends on a memory
component, and if rhythm production at a slow tempi is facilitated by a
temporally extensive memory capacity, then participants with a long
auditory working memory capacity should perform relatively better
when synchronizing to slower tempi. To investigate this I conducted
a study (Bååth, Submitted) where participants performed an auditory
digit span task – a task commonly used to measure auditory working
memory capacity (Baddeley, 2000; Hester et al., 2004) – and a SMS finger
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tapping task5. Despite large inter-individual variability in both audi-
tory working memory capacity and timing performance there was a
very small effect of auditory working memory capacity on timing per-
formance. Furthermore, there was no evidence that memory capacity
was related to better timing performance at slow tempi. There are two
different interpretations of this result: (1) It can be taken as evidence
that there is no strong connection between auditory working memory
and rhythm perception and that a slower limit of rhythm perception
does not directly depend on a temporal limit of working memory. (2) It
can be taken as evidence that the auditory digit span task is not a good
measure of auditory working memory capacity.

In line with the interpretation that there is no strong connection
between auditory working memory and rhythm perception, there are
models that posit a mechanism dedicated to rhythm perception (for
example, Large, 2008). There are also models that posit mechanisms
dedicated to timing but with a temporal limit (Pöppel, 2004; Mates et al.,
1994; Miyake et al., 2004). Lewis and Miall (2006) calls timing which
relies on a dedicated mechanism automatic timing, whereas timing of
intervals beyond the temporal limit is named cognitive timing. This
latter term reflects that timing of longer intervals require attentional
and executive resources (Lewis and Miall, 2003). To investigate whether
rhythmic timing requires more attentional resources at slow tempi, I,
together with group of master students6, performed a dual task study
where the main task was a SMS task and where the distractor task
was a covert response 2-back task (Bååth et al., Submitted). A second
motivation for performing this study was that Holm et al. (2013) had
not found any task interference between a rhythmic tapping and a
task designed to require attentional resources, a result that I found
strange. We did find that performing the 2-back task simultaneously as
the SMS task resulted in worse performance in both task, and that this
deterioration in performance increased with slower tempi.

5A second reason for why I did this study was that in many situations where I have
talked with psychologists about rhythm perception, and especially the slow limit of
rhythm perception, the comment I got was: “That must surely be related to working
memory!”

6T. Tjøstheim, M. Lingonblad, F. Nelhans, D. Sivén, R. Yamazaki and H. Siljebråt.
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3.4 Subjective rhythmization

There is a long tradition of investigating visual illusion in order to better
understand visual perception (Eagleman, 2001). The are also cross-
modal illusions, like the illusory flashing illusion, where the number of
perceived flashes is modulated by the number of beeps accompanying
the flashes (Shams et al., 2000). Compared to the wealth of known
visual illusions there are relatively few known auditory illusions (but
see Madison, 2009 and Hoopen, 2008).

One auditory illusion is subjective rhythmization (SR), an illusion
with connections to meter perception, described in the 18th century by
Kirnberger (1776) and first studied by Bolton (1894). The illusion is that
sounds of a monotone metronome sequence are experienced as having
different intensity, with the experienced intensity differences following
a regular pattern. For example, it is common that every second or
every fourth sound is perceived as accented, effectively grouping the
sequence and imposing what could be described as a metric structure.
Despite recent interest in the electrophysiological properties of SR (e.g.,
Nozaradan et al., 2011; Schaefer et al., 2011) there was, prior to my
work on the subject, only one modern study, that by Vos (1973)7, which
employed Bolton’s (1894) experimental paradigm. I have focused on
this illusion in one short conference paper (Bååth and Ingvarsdóttir,
2014) and in one paper accepted for publication in Music Perception
(Bååth, In press).

Subjective rhythmization is relevant to rhythm production at slow
tempi, and especially the notion of a slower limit of rhythm perception,
because the illusion is highly tempo dependent (as illustrated in figure
5 in Bååth, In press). When the tempo is fast, around an ISI of 200 ms,
participants tend to experience every eight or every fourth sound as
accented. At a moderate tempo, around an ISI of 600 ms, participants
tend to experience every second sound as accented. When the tempo is
very slow, around an ISI of 2000 ms, most participant respond that they
do not experience the illusion anymore. That is, while a slower limit
of rhythm perception can appear a somewhat elusive concept – it has
not been possible to pinpoint a slow limit using SMS tasks – SR is a rare
example of a task related to rhythm perception that has a slower limit.
Why SR occurs can be explained within the resonance theory frame-

7The work of Vos (1973) is only published in Dutch, but has been reanalyzed by van
Noorden and Moelants (1999).
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work of rhythm perception chiefly developed by Large (2010). This
framework, which is based on the notion of neural oscillation, has been
used to model as diverse phenomena as SMS behavior in the presence
of tempo changes (Loehr et al., 2011), the perception of polyrhytmic
stimuli (Angelis et al., 2013), and categorical rhythm perception (Bååth
et al., 2014a). With respect to SR, the resonance framework can be used
to explain why the phenomena occurs, its tempo dependence and why
participants tend to report that every second, fourth or eighth tone is
accented more often than other possible divisions (Bååth, In press).

An update on Experiment 2 in Bååth and Ingvarsdóttir (2014)

In the SR paradigm employed in Bolton (1894), Vos (1973) and Bååth
(In press), participants are explicitly asked whether they experience
any subjective accents. This might put undue pressure on participants
to report experiencing SR, and it would be desirable to demonstrate
that participants experience SR without explicit instructions. A pilot
study was presented in Experiment 2 in Bååth and Ingvarsdóttir (2014)
where participants were asked to listen to a number of metronome
sequences and indicate whether all sounds were equally intense or not.
A participant got either the instruction that every second or that every
fourth sound could be more intense, however, in the sequences played
to the participants all sounds were identical. The only thing that was
varied in the experiment was the task instructions and the tempo of
the sequences. For more information regarding the method see section
3.1 in Bååth and Ingvarsdóttir (2014). Even if participants were not
explicitly told about SR, they responded as if they did experience the
illusion. However, the data was to weak to submit to statistical analysis.

Here I present an unpublished dataset that build upon Experiment
2 in Bååth and Ingvarsdóttir (2014). The task was identical to that in
Experiment 2 except for that (1) only the ISI levels 275 and 700 ms
were used, (2) each participant was given both the “every second” and
“every fourth” instructions in randomized order, and (3) participants
were given five trials per condition, totaling 20 trials. The ISI levels were
selected as to maximize the probability of the participants experiencing
that every second or fourth sound was accented at the 700 ms and
275 ms ISI level, respectively. Fourty-five participants was recruited
by means of public advertising and the results are summarized in
figure 3.4. In the “every second” condition participants reported more
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Figure 3.4: The mean proportion of trials in which the participants
responded hearing an accent. The data is from the follow-up study of
Experiment 2 presented in Bååth and Ingvarsdóttir (2014).

often hearing accents at the slower tempo, an mean increase of 15
percentage points, while in the “every fourth” condition there was a
negligible difference between the two ISI levels, a mean difference of
-2 percentage points. The difference in this mean increase of reported
accents between the two conditions was statistically significant (paired
t-test, M = 0.17, 95% CI: [0.044, 0.29], p < 0.01). This difference indicates
that the participants experience some SR, despite not being explicitly
instructed about the phenomena. However, the negligible difference
between the two ISI levels in the “every fourth” condition is puzzling
and warrants further investigation.

3.5 Estimating a slower limit of rhythm perception

A secondary research question of this thesis has been: What is the
slower limit of rhythm perception? Already Woodrow (1932) noticed
that “the task of synchronizing at the rates of one sound every 2 sec
or every 4 sec seemed definitely different from that at rates of one
sound every 1 sec or less”. He also transcribed verbal reports from his



38

participants, here when synchronizing to an ISI of 4000 ms:

"I never seemed to act automatically as I did with the shorter
intervals. Each tap was an individual reaction. [...] I couldn’t
get the ’feeling’ of the rate or perform with any feeling of
satisfaction the task of synchronizing."

"It seems almost impossible to keep the taps synchronous.
There was no basis apparently for noting the time interval.
There was no rhythm [...]”

"It was just a matter of ’blind’ guessing when to tap the key."

Compare this to verbal reports from participants synchronizing to ISIs
shorter than 1000 ms:

“I felt as though my arm became an automatic machine
after I had tapped for a while, when I seemed to be doing
best. Then I did not voluntarily make each tap but it went
on without my will – all I had to do was to set my arm in
motion at the correct rate and it went ahead tapping.”

“The action of the tapping finger seemed to be controlled by
the stimulus-series and more or less free from conscious con-
trol. In other words it became automatic, if that expression
may be used. “

I include these quotes here because the verbal reports of Woodrow (1932)
well match verbal reports from participants in my own experiments,
and my own experience.

Now, there does not seem to be a slower limit, within reason, where
participants are completely unable to synchronize to a metronome
sequence (Repp, 2006). So, in the studies presented in this thesis I have
attempted to probe a slower limit of rhythm perception using other
methods, however, I have not been able to produce a final answer. My
attempts to estimate this slower limit are summarized in the following
sections. I conclude with Figure 3.6 that compiles my findings together
with other findings from the literature related to slow limits of time
perception and rhythm perception. As seen in this figure, there is no
clear candidate for a slower limit of rhythm perception. I do not wish
to over-interpret these results, but to point out that:

• The findings stretch a range of ISIs of 1000 to 3000 ms. While this
is a wide range of tempi, all findings correspond to slow tempi (cf.
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Largo, 40 - 60 BPM), or slower, from a musical perspective, and
are far from a moderate tempo of 120 BPM.

• One cluster of findings is seen around an ISI of 1500 ms and one
cluster is seen in the range 2500 to 3000 ms.

Using the slow motor tempo task

This task, described in the beginning of section 3, is seemingly a suitable
task for pinpointing a slower limit of rhythm perception. Participants
are asked to tap out a rhythm that is as slow as possible, while still
being able to maintain a regular beat. Assuming that participants need
to perceive the beat in order to maintain it, this task should result
in participants tapping at tempi close to their slower limit of rhythm
perception. The first example of this task, that I have been able to find, is
given in McAuley et al. (2006). Their result was stratified by age group,
but looking at the age group 18-38 years, the mean intertap interval was
2532 ms in the slow motor tempo task. I replicated this task in Bååth (In
press) and found a similar mean intertap interval of 2757 ms.

A problem with this task is that it is open to interpretation and
that it is possible to approach the task in many ways. For example,
participants might subdivide the beat covertly to facilitate tapping a
slow beat, even when given instructions not to. To try to mitigate this
problem I introduced a modified slow motor tempo task with overt
counting, that is, participants were asked to count their taps aloud. The
idea being that the overt counting would preclude covert counting.
The resulting median intertap interval was 2719 ms (Bååth, Submitted),
similar to the result in the two earlier studies.

Using subjective rhythmization

The connection between a slow limit of subjective rhythmization (SR)
and a slow limit of rhythm perception is not directly apparent. However,
as experiencing SR implies being able to superimpose a subjective
rhythmic structure on a monotone sequence, it can be assumed that in
order to experience SR at a certain tempo one must be able to perceive
rhythm at that tempo. The slow limit of SR can therefore be seen as
a lower bound of the slow limit of rhythm perception. Furthermore,
if one accepts the resonance theory explanation of SR given in Bååth
(In press), there is a direct connection between the slower limit of SR
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and the slower limit of rhythm perception: The slower limit of rhythm
perception is approximately twice that of the slower limit of SR.

The slower limit of SR given by Bolton (1894) is at an ISI of 1600
ms. In Bååth (In press) there was no ISI level where all participants
reported experiencing no SR. However, at an ISI of 1500 ms less than
half of the trials resulted in that the participant experienced no SR, and
this can be taken to define the slower limit. Another method to define a
slower limit of SR is to calculate the mean group period of the reported
groupings in the SR task (see the Analysis section in Bååth, In press, for
more details), which in Bååth (In press) equaled 1881 ms.

Using sensorimotor synchronization data

While there is no slower limit where participants are unable to synchro-
nize to a metronome sequence, it is possible to look at how synchro-
nization influences other measures. For example, Miyake et al. (2004)
argued for two types of anticipatory synchronization by showing that
when a participant performed a distractor task and a synchronization
task simultaneously, the number of reactive taps increased markedly
at an ISI of 1800 ms. Marked changes, in the studies presented in this
thesis, that occurred in other measures when participants synchronized
at different tempi were:

• In Bååth and Madison (2012), the largest increase in rated difficulty
of synchronization occurred between ISIs of 1200 and 1800 ms.

• In Bååth et al. (Submitted), the largest increase in timing per-
formance, as measured by the log asynchrony SD, due to task
interference occurred between ISIs of 897 and 1342 ms.

• In Bååth et al. (Submitted), the largest increase in the coefficient
of variation, the percentage of reactive responses, and the number
of errors in the n-back task, occurred between ISIs of 2006 and
3000 ms

When a change happens between two ISI levels, a reasonable summary
is to take the midpoint between the two ISI levels. For the three marked
changes above the midpoints are 1500, 1120 and 2503 ms, respectively.
Note that these slow limits are highly tentative as a “marked change”
can be defined in many ways and because the resulting midpoints are
highly dependent on the ISI levels.
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Using an optimality argument

One could also ask: What should be the slower limit of rhythm percep-
tion? There are a multitude of ways to approach this question and the
exposition given below should just be viewed as an example of one
such approach and as proof of concept8.

Rhythm perception helps anticipation and prediction of events that
occur in a pattern over time (Large and Jones, 1999). The ultimate
purpose of all cognitive processes is to guide action. By perceiving the
rhythm of a sequence, an agent might be able to better respond to an
upcoming event by timing the response to the expected occurrence of
that event, rather than just reacting to it. Here a criteria to optimize
would be to minimize the distance in time between the response and
the event, that is, to minimize the mean absolute error. If relying on
rhythmic expectation results in a smaller mean absolute error then that
is a preferred strategy over reacting to the event onsets.

However, it might not necessarily be better to rely on rhythmic
expectation in all situations. One such situation is when trying to syn-
chronize to a slow metronome rhythm. As timing variability increases
as a function of the ISI, there comes an ISI that is so slow that it is a
better strategy to simply react to the sound onsets. At tempi faster than
this ISI, rhythmic expectation – and rhythm perception – are useful,
with respect to the narrowly defined criteria to be optimized. At tempi
slower than this ISI rhythm perception serves no purpose. Assume
further that it is more costly to have a sense of rhythm that spans a
wider tempo range. The optimal slower limit of rhythm perception is
then the longest ISI where it is still advantageous to rely on rhythmic
expectation over reacting to the sound onset.

It is possible to estimate this slower limit, given data on the mean
absolute error at different tempo in rhythmic timing and data on audi-
tory reaction time. Below I use the finger tapping data from the group
of non-musicians in Repp and Doggett (2007) and auditory reaction
time data from the group of adults in Löwgren et al. (2014)9. The mean
absolute error was calculated for each participant and ISI level in the
finger tapping data, and a line was fitted using linear regression with

8I thank Hans-Henning Schulze for suggesting this approach when we met at
the 14th Rhythm perception and production workshop at University of Birmingham.
Recently I also found that a similar calculation was presented by Woodrow (1932).

9Here I would like to thank Bruno Repp and Karolina Löwgren for giving me access
to these datasets.
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Figure 3.5: Each point show the mean abolute timing error for one of the
non-musicians in Repp and Doggett (2007). The dashed line show the
median auditory reaction time in Löwgren et al. (2014). The intersection
between the dashed line and the solid line can be seen as an optimal
slow limit of rhythm perception, according to the argument given in
section 3.5.

ISI as the predictor variable and mean absolute error as the outcome
variable. The median was taken of the auditory reaction time data. The
resulting estimates are shown in Figure 3.5, where the optimal slow
limit of rhythm perception is the intersection of the mean absolute tap-
ping error (the solid line) and the median auditory reaction time (the
dashed line). Given these data sets the optimal slow limit was at an ISI
of 3000 ms.

Now, the exposition given above is, of course, a gross oversimpli-
fication. Yet, it is interesting to note that the optimal slower limit here
calculated is not far removed from what would be expected, and that it
coincides with the slow limit of rhythm perception as calculated using
SR in Bååth (In press) and with Pöppel’s (1997) window of temporal
integration.
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4. Introduction to the papers

4.1 Paper I – The subjective difficulty of tapping to
a slow beat

Motivation

There are verbal report, at least dating back to Woodrow (1932), of that
it is difficult to feel and produce very slow rhythms. As Repp (2006)
writes: “At [interstimulus intervals] up to 1500 ms or so, [keeping a
rhythm] seems to proceed effortlessly and automatically, but the task
begins to feel laborious as the [interstimulus interval] approaches 1800
ms”. What is the cause of this perceived difficulty and is it generally the
case, as Repp suggests, that the difficulty starts as the tempo approaches
1800 ms? These questions relate to the more general research question
of this thesis: Is there a slow limit of rhythm perception, and if so, at
what tempo is that limit?

Procedure

Thirty participants were recruited from the Lund community. Partic-
ipants were asked to perform a standard sensorimotor synchroniza-
tion tapping task where the stimuli consisted of isochronous sound
sequences corresponding to tone interstimulus intervals (ISI) of 600,
1200, 1800, 2400 and 3000 ms. Each participant was presented with
20 trials, four for each ISI level. After each trial the participant rated
the difficulty of tapping on a seven point scale ranging from “very
easy” to “very difficult”. The custom built tapping board described in
section 2.2 was used both to play the sound sequences and to record
the participants’ responses.

47
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Conclusion

There was a strong, statistically significant correlation between ISI and
rated difficulty. This was expected, given the many verbal reports
supporting such a correlation, but, to my knowledge, it is the first time
it has been shown in an experiment. In general, the participants rated
it as easy to synchronize at the ISI levels 600 and 1200 ms. At the 1800
ms ISI level there was marked increase in rated difficulty, supporting
Repp’s (2006) notion of at what tempo keeping a rhythm becomes
difficult. This perceived difficulty was also shown to mostly depend on
the tempo, and not on how well a participant actually manage keep the
rhythm during a trial.

4.2 Paper II – A prototype-based resonance model
of rhythm categorization

Motivation1

Every time a piece of music is transcribed the person doing the tran-
scription has to make a choice: How to represent what is heard using a
limited number of musical symbols? As the number of ways to notate
the rhythm of a piece of music is finite, and as different rhythmic se-
quences can be notated in the same way, transcribing a rhythm implies
making a categorization. Desain and Honing (2003) showed that musi-
cally trained participants reliably experienced rhythms as belonging to
rhythmic categories, but that the participants’ categorization depended
on the metric structure of the rhythm sequences. They concluded that:
“It is puzzling, however, that although meter was shown to exert a
strong influence on the recognition of rhythm [...] existing computa-
tional models of meter can explain this phenomenon only to a small
extent.”

At this point in my PHD-studies I became interested in the prospect
of using dynamical systems to model rhythm perception, where Large’s
(2010) resonance theory of rhythm perception was one of the most
developed computational framework. This paper thus explored the

1This is the one paper in my thesis that is not directly related to rhythm perception
at a slow tempo. However, it led me to explore the resonance framework of rhythm per-
ception (Large, 2010), which I subsequently used in Paper IV to explain the phenomena
of subjective rhythmization.
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question: Can the resonance theory framework Large (2010) be used
to model the type of rhythm categorization described by Desain and
Honing?

Procedure

A computational model was implemented in MATLAB using the Non-
linear time-frequency transformation workbench developed by Large and
Velasco (In preparation). The original dataset from Desain and Honing
(2003) was encoded and given as input to the model which was used
to make categorical decisions. That is, it took a rhythm defined in the
continuous time domain and produced a categorization of this rhythm
in the form of musical notation.

Conclusion

The categorization made by the computational model and the catego-
rizations made by the participants agree to a large extent. The model
also captured how changing the metric structure of the rhythm affected
the participants’ categorical choices. This result supports the notion
that resonance theory is a viable model of rhythm perception and that
by viewing rhythm perception as a dynamical system it is possible to
model properties of rhythm categorization.

4.3 Paper III – Subjective rhythmization: A repli-
cation and an extension

Motivation2

Subjective rhythmization is an auditory illusion that shows how hu-
mans are primed to experience rhythm. The illusion occurs when one
listens to a sequence of isochronous, identical sounds. A metric pattern
of accents will emerge which gives the impression that there are groups
of sounds. That is, even though the sounds are objectively identical

2In retrospect, this paper was a stepping-stone towards Paper IV. Both papers
aimed at replicating the seminal work of Bolton (1894) on the phenomena of subjective
rhythmization, but Paper IV improves upon Paper III in all aspects. Yet I decided
to include this paper in the thesis as it constitutes an independent replication of the
subjective rhythmization phenomena, and as it shows how my work on this thesis has
progressed.
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they sound subjectively different. Save for a small study by Vos (1973),
the subjective rhythmization paradigm had not been replicated since
the original study by Bolton (1894).

When I first encountered this illusion I was fascinated, both by the
illusion itself, and by that the effect of subjective rhythmization is highly
dependent on the sequence tempo. For example, Bolton (1894) argued
for that the effect of subjective rhythmization vanished when the tempo
was slower than an ISI of 1600 ms. The main research question of
this study was: Can the phenomena of subjective rhythmization, and
especially its tempo dependency, be replicated?

Procedure

One hundred and thirty-two participants were recruited using the on-
line service Amazon Mechanical Turk. The participants were played
monotone metronome sequences with ISIs of 200 , 300 , 400 , 600, 800
and 1500 ms and asked whether they experienced any accents.

Conclusion

The study replicated many of the findings of Bolton (1894) and Vos
(1973). For example, that participants often report groupings of two,
four or eight, the common meters of western music, and that what
grouping participants experience is tempo dependent, with larger
groupings being reported at faster tempi. When listening to the se-
quence with an ISI of 1500 ms, a majority of the participants (81%)
reported hearing no accents which is in line with Bolton’s estimate of
the slow limit of subjective rhythmization. In conclusion, this study
supported that subjective rhythmization is a robust phenomena that is
experienced by a large proportion of the population.

4.4 Paper IV – Subjective rhythmization: A repli-
cation and an assessment of two theoretical ex-
planations

Motivation

Paper III was a small online study and in this follow-up study I sought
to study subjective rhythmization in an environment with better control
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over the external factors. Furthermore, I wished to test a number of
prediction arising from two theoretical explanations of why subjective
rhythmization occurs: the preferred tempo explanation of Temperley
(1963) and the resonance theory explanation due to Large (2008). I
considered the resonance theory explanation more plausible, a priori,
and one exciting prediction made by this theory was that there should
be a relation between how well a participant can synchronize to a slow
metronome beat and how large groupings that participant will experi-
ence in the subjective rhythmization task. This relation resulting from
that, within the resonance theory, both slow synchronization perfor-
mance and group size can be seen as proxy variables to a slower limit
of rhythm perception.

Procedure

Thirty participants were recruited from the Lund community and asked
to perform a subjective rhythmization task and a number of rhythm pro-
duction tasks. The custom built tapping board described in section 2.2
was used both to play the sound sequences and to record participants’
responses.

Conclusion

All participants reported hearing accented tones in the subjective rhyth-
mization task, despite being explicitly told that the sound sequences
were monotone. As observed by Bolton (1894), what groupings par-
ticipants experienced was highly tempo dependent. A new finding
was that participants were also very consistent in their responses and
tended to experience the same grouping in repeated trials of the same
tempo. The results were in line with the predictions developed on
the basis of resonance theory. For example, there was a correlation
between how large groupings a participant experienced and how well
a participant could synchronize at a slow tempo, showing a direct con-
nection between a rhythm production task and an introspective rhythm
perception task.
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4.5 Paper V – Estimating the distribution of senso-
rimotor synchronization data: A Bayesian hier-
archical modeling approach

Motivation

This is a technical paper that solves a problem that I had. I was con-
vinced that the conventional method for calculating timing performance
in sensorimotor synchronization tasks would give misleading results
when used on rhythmic timing data from trials when the tempo was
very slow. The reason for this is that at slow tempi participants start to
react to the sound onsets, rather than anticipating the onsets, resulting
in a skewed, bimodal response distribution with a long left tail and
a short right tail. As I planned to study rhythm production at slow
tempi I needed a robust method that allowed me to estimate timing
performance at any tempo.

Procedure

I developed a statistical model that accounted for that participants make
reactive responses at slow tempi. The model was developed using
a Bayesian methodology, as this framework facilitated incorporating
prior information regarding the distribution of reactive and anticipatory
responses.

Conclusion

In a simulation study, and on a data set collected by Repp and Doggett
(2007), I showed that using my method worked as well as conventional
methods at moderate tempi, and worked considerable better at slow
tempi. The best performing version of my method was a hierarchical
Bayesian model, which was subsequently used to estimate rhythm
timing performance in Papers VI and VII.
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4.6 Paper VI – Working memory, memory for mu-
sical rhythms, and rhythm perception

Motivation

Here I examined the relationship between auditory working memory,
sensorimotor synchronization performance, and memory capacity for
rhythms. A number of predictions were made regarding the relation-
ship between these capacities, based on the current literature on rhythm
perception and working memory. One such prediction was that partic-
ipants with a large memory capacity would be comparably better at
synchronizing to slower sequences. This prediction was based on that
synchronization to slow sequences requires longer time intervals to be
retained and reproduced, and that a long auditory working memory
span should be advantageous for retention of long intervals. A strong
connection between memory capacity and slow synchronization would
be relevant to my investigations into the slower limit of rhythm percep-
tion, as the slower limit could then be explained as resulting from the
limited capacity of auditory working memory.

Procedure

Thirty-six participants were recruited through public advertising. Each
participant performed a digit span task, a sensorimotor synchronization
task, a slow motor tempo task, and a novel rhythm span task developed
by Schaal et al. (2014). The custom built tapping board described in
section 2.2 was used to record the participants’ timed responses.

Conclusion

The results showed that auditory working memory – as measured by
a digit span task – and memory capacity for rhythms are related. Au-
ditory working memory and memory capacity for rhythms were also
related to sensorimotor synchronization performance, albeit weakly.
However, the influence of memory capacity on synchronization perfor-
mance showed no interaction with sequence tempo, suggesting that
auditory memory capacity does not play an integral role in rhythm
production and that limits in memory capacity can not solely be used
to explain the slower limit of rhythm perception.
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4.7 Paper VII – The role of executive control in rhyth-
mic timing at different tempi

Motivation

It has been proposed that different mechanisms are recruited by rhyth-
mic timing depending on the tempo (Grondin, 2012). Relevant here is
the notion of a slower limit of rhythm perception, the temporal bound-
ary where perceiving and synchronizing to a rhythmic sequence goes
from being effortless to requiring attention and executive control. This
study used a dual-task setup to investigate whether rhythmic timing
requires more attentional resources at slow tempi compared to a com-
fortable tempo. A secondary reason performing this study was that
Holm et al. (2013) have argued for that rhythmic timing, even at slow
tempi, does not require attentional resources, a proposition that that I
found unlikely to be true.

Procedure

Twenty-four participants were recruited via public advertising. We
employed a dual-task setup to investigate whether rhythmic timing
required more attentional resources at slow tempi compared to com-
fortable tempi. The main task was a sensorimotor synchronization
task in where participants synchronized their finger taps to metronome
sequences ranging in tempo from an ISI of 600 to 3000 ms. On half of
the trials there was a concurrent distractor task; a novel variant of the
n-back task. The custom built tapping board described in section 2.2
was used to record the participants’ responses.

Conclusion

The result showed that, when the tempo is sufficiently slow, performing
rhythmic timing demands attentional resources and involvement of
executive control. This result resonates with neural models of timing
that suggest a dedicated timing mechanism for short intervals and a
general, cognitive timing mechanism for longer intervals. A research
question throughout my thesis project has been: What is the slower
limit of rhythm perception? However, there is a more fundamental
question: Is there a slower limit of rhythm perception? This study
showed that rhythmic timing requires more cognitive resources the
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slower the tempo, and it can be assumed that both attentional resources
and executive control are limited capacities. Therefore, independent of
whether rhythmic timing depends on one or several mechanisms, this
study supports the view that rhythm perception and rhythmic timing
do have a slower limit.
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Coda

If writing a thesis is a journey, my road has not been straight. The
research plan I handed in as part of my PHD application had the lofty
goal of implementing “a biologically valid model of learning, generating
and categorizing actions”. I worked on this for a year until I realized I
didn’t know what I was doing and gave up. As I’ve was a PHD-student
within the Linnaeus research environment Thinking in Time, I thought I
would do something related to time perception instead and so I started
to work on what has now become this thesis. But I still had four years
to go which, in my mind, was plenty of time, and so I diverged:

• I implemented a tool for exploring word use in Child language
(http://www.childfreq.sumsar.net), the accompanying technical
report (Bååth, 2010) is my most cited paper by far. “Candy”
overcomes “Banana” in word-use frequency around an age of
30 months.

• I wrote a paper on visual illusions in cats (Bååth et al., 2014b). To
be more specific, visual illusions in my cat.

• I presented my work on how to use eye movements to play
rhythms at a Norwegian conference on novel musical instruments
(Bååth et al., 2011b).

• I have invested a lot of time in the statistical programming lan-
guage R. I have presented at the last three UseR! conferences and I
have published in the R journal (Bååth, 2012). Nothing of this was
directly related to my thesis, but it’s the part of my PHD-studies
that I am most proud over.

• I developed a Bayesian model for predicting the outcome of foot-
ball matches (Bååth, 2015b). This model won the Data Analysis
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Contest at the UseR! 2013 conference in Albacete, and won me 60
SEK on Sevilla vs. Valencia.

• I’ve been to several workshops together with Sverker Sikström
and presented on the topic of the semantics of Vagueness (Bååth
et al., 2011a). To be honest, I’ve never really understood the precise
meaning of that term.

• Thanks to Sverker I have had a hand in studies on the semantic
development in children (Submitted), on misleading argumenta-
tion in legal contexts (Dahlman et al., 2015), and on distracting
factors in the work environment (Seddigh et al., 2015). One thing
I learned is that Sverker Sikström is a distracting factor when you
are trying to write a thesis. (A distracting factor who is always
fun to talk to, and who has many distractingly interesting ideas,
that is!)

• I started a surprisingly popular statistics blog over at http://
sumsar.net which had more than 80,000 visitor last year. It is a
sad fact, but true, that any one of my blog posts have had more
readers than everything I have published combined.

• I have given the research service of the Swedish parliament (Riks-
dagens utredningstjänst) a crash course in Bayesian data analysis.
And for the past two years Ullrika Sahlin and I have been the main
organizers of the Bayes@Lund conference (http://www.lucs.lu.
se/bayes-at-lund-2015/).

• I developed a new “Statistics 101” course from scratch, which I
taught to the cognitive science students in 2014 as part of their
master program. Unfortunately it had to be a course in frequentist
statistics, which it confusing at best and intellectually harmful at
worst. I might have caused them irreparable damage.

• I have been privileged to be able work with the Cognitive zoology
group at LUCS and had a very small hand in a paper on play in
raven chicks (Osvath et al., 2014) and in a paper on the lemonade
preferences of orangutans (Submitted).

• And one some point I built a robot snake, unfortunately I don’t
remember why3.

3You can still see it crawl on YouTube: https://youtu.be/L9n3Yo39G-c .
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In retrospect, it is actually a small miracle that there was a thesis at all...
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Abstract
The current study investigates the slower limit of rhythm perception
and participants' subjective difficulty when tapping to a slow beat.
Thirty participants were asked to tap to metronome beats ranging in
tempo   from   600   ms   to   3000   ms   between   each   beat.   After   each
tapping trial the participants rated the difficulty of keeping the beat
on a seven point scale ranging from “very easy” to “very difficult”.
The   result   strongly   support   the   notion   that   subjective   difficulty
increased with slower tempo as this was the case for all participants.
While   rated   difficulty   increased   monotonically   as   a   function   of
tempo the largest increase was between the tempo of 1200 ms and
1800 ms. This is in line with earlier reports on where tapping starts
to feel laborious and supports the notion that there is a qualitative
difference between tapping at fast (< 1200 ms between each beat)
and slow  (>  2400  ms  between each  beat)   tempi.  A  mixed model
analysis   showed   that   tempo,   tapping   error   and   percentage   of
reactive responses all affected the participants rating of difficulty. Of
these, tempo was by far the most influential factor, still participants
were, to some degree, sensitive to their own tapping errors which
then influenced their subsequent difficulty rating.

I. Introduction
Music come at a wide range of different tempi.  John Coltrane's

Giant Steps is an example of a tune that clocks in at the faster end of
the   spectrum   with   a   tempo   of   285   beats   per   minute   (bpm).   An
example of a piece of music at the slower end of the spectrum would
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be Bach's Air from suite No. 3 in D major which is sometimes played
at a tempo below 60 bpm. There are more extreme examples,  for
example, John Cage's  As Slow as Possible  has months between each
new note.  It  is,  however, rare for popular music to have a tempo
slower than 1500 ms and faster than 300 ms between each beat, with
tempi around 500 ms being the norm (van Noorden and Moelants,
1999).  This  can also  be  seen  in   the   tempo ranges  of  metronomes
which generally do not go slower than 1500 ms or faster than 300 ms
between each beat.

It is reasonable to believe that these limits in tempo in some way
reflect   the   limits   of   rhythm   perception.   Both   the   slower   and   the
faster   limit  of   rhythm perception  has  been studied using  rhythm
production tasks, especially finger tapping (Repp, 2005). The faster
limit of  rhythm perception has been assessed using tapping tasks
where participants are asked to tap to successively faster metronome
sequences. In order to not be limited by motoric factors when the
tempo   is   fast   only   every   second   tone   in   the   metronome   beat   is
tapped   to.   Using   this   method   trained   musicians   are   able   to
synchronize to sequences with an inter stimuli interval (ISI) of close
to 100 ms (Repp, 2007).

The slower limit of rhythm perception has been more difficult to
assess as there seems to exist no (within reason) upper limit where
tapping to a beat is no longer possible. When asked to freely tap a
beat as slow as possible participants tend to tap at a tempo of around
2500   ms   between   each   tap   (McAuley   et   al.,   2006).   However,
participants are able to tap at a much slower rates when paced by a
metronome (Miyake et al., 2004). A common observation is that, as
the   tempo   gets   slower,   there   is   an   increase   both   in   tapping
variability and in the number of reactive responses. Here a  reactive
response  refers   to   a   response   where   the   participant   reacts   to   the
sound rather than anticipates it (Repp and Doggett, 2007; Mates et
al.,   1994).   Even   though   tapping   variability   increases   with   slower
tempo  there   is  at  no point  a sharp change  in  tapping variability.
Nevertheless Repp (2006) argued for a slower limit around 1800 ms
as it is around this tempo that participants start having difficulties
anticipating the tones and reactive responses start to occur. He also
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noted that tapping is a rather effortless activity up to a tempo of 1500
ms, but when the tempo approaches 1800 ms it becomes a difficult
task   requiring   attention   and   effort.   This   observation   was   not
supported   by   any   experimental   data,   however,   and   the   present
study aims   to   investigate   the  relation between  tapping error  and
subjective ratings of difficulty when tapping to a slow metronome
sequence. 

The study had three aims: (1) To establish the relation between
subjective difficulty and tempo. (2) To test the hypothesis that there
is a qualitative difference between tapping at fast and slow tempi
and   that   this   is   reflected   by   a   steep   shift   in   subjective   difficulty
around an ISI of 1800 ms. (3) To test if subjective difficulty depends
on the tempo, the trialtotrial performance of the participants or a
combination   of   these   factors.   (1)   and   (2)   is   motivated   by   the
observation   by   Repp   (2006)   described   above.   A   participant's
experience   of   difficulty   when   tapping   could   be   caused   by   many
factors, both factors that made the task more difficult, for example, a
slow tempo, and factors that was the result of the high difficulty,
such   as   a   large   tapping   error   or   a   high   percentage   of   reactive
responses. It might be the case that participants are sensitive to their
own performance. For example, a participant might notice that he or
she produced many reactive responses during a trial and as a result
experience   that   trial   as   more   difficult.   On   the   other   hand,
participants might not be influenced by their own performance but
solely by the difficulty of tapping at a slow tempo. The motivation
for   (3)   is   to  pinpoint  what   factors   influences   subjective  difficulty
when tapping at a slow tempo. 

II. Method

A. Participants
Nine female and 21 male participants, ranging in age from 19 to 78

years (M=31.6 , SD=12.8) were recruited from the Lund community.
All  were  unpaid  volunteers.  All  participants  reported being right
handed. Twentysix participants reported that they had experience
playing   an   instrument   and   ten   participants   reported   having

3



regularly played or practiced an instrument for more than ten years.
All participants gave informed consent according to the guidelines
of the Swedish Research Council.

B. Material
A custom build tapping board was used to record the onsets and

velocities   of   the   participants'   finger   taps.   For   a   technical   report
describing the tapping board see Bååth (2011). The stimuli for the
tapping task consisted of isochronous sequences of 440 Hz square
wave tones of 20 ms. Each sequence consisted of 31 tones and were
presented at five tempi, corresponding to tone ISIs of 600, 1200, 1800,
2400 and 3000 ms. The ISI of 600 ms can not be regarded a slow
tempo but was included as a baseline, as participants tend to prefer
tapping at an ISI of around 600 ms when being able to choose freely
(McAuley et al.,  2006). Both registration of taps and generation of
sound   was   handled   by   an   Arduino   microcontroller,   this   was   in
order   to   avoid   the   timing   uncertainties   resulting   from   using   a
personal   computer   and   to   guarantee   millisecond   accuracy.   The
microcontroller was connected to a Dell Vostro 3700 computer that
collected the timing information through a USB interface.

C. Procedure
During a session each participant performed a number of rhythm

perception and production tasks, but only the data from the tapping
and   rating   tasks   are   analyzed   here.   In   the   tapping   task   the
participants sat in front of the tapping board wearing head phones.
The task consisted of four blocks where each block contained five
trials, one for each tone ISI. The order of the trials was randomized
within each block.  First   the participants  were  asked to adjust   the
volume   of   the   head   phones   to   a   comfortable   level   while   a   tone
sequence was playing. After a short test trial the participants started
with  the   first  block.  They  tapped using  the   index  finger  on  their
dominant hand which was the right hand for all participants. There
was a scheduled one minute break after the second block, otherwise
successive   trials  were started as  soon as  the participant   indicated
that he or she was ready. 

A trial consisted of the participants tapping to a tone sequence on
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the tapping board. The instructions given were to try to tap along
the   given   tone   sequence,   to   try   to   start   tapping   as   soon   as   the
sequence   started   and   to   stop   when   the   sequence   stopped.   The
participants were especially asked not to subdivide the beat in any
way, for example by covert counting or by movement of the body.
After finishing each sequence the participants rated the difficulty of
tapping on a seven point scale ranging from “very easy” to “very
difficult”. More specific, the participants were asked to rate “How
difficult   did   you   find   it   to   keep   the   beat?”   (translated   from   the
Swedish “Hur svårt tyckte du det var att hålla takten?”).

D. Analysis
The first four taps of every trial were discarded in order to use

only   those   taps   where   the   participants   had   had   some   time   to
synchronize   to   the   sequence.   For   each   tone   in   the   sequence   the
taptotone asynchrony was calculated as the difference between the
tone onset and the corresponding tap so that a negative asynchrony
indicated   that   a   tap   preceded   the   tone.   Sometimes   participants
tapped as a reaction to the tone instead of tapping with the tone.
This was especially common at the slow tempi.  For each trial the
percentage of  reactive responses was calculated where a response
was labeled as reactive if the corresponding asynchrony was larger
that 100 ms. Statistical analysis was conducted using the R statistical
environment  Team (2010).  Mixedeffects   regression modeling was
done   using   the   lme4   package
(http://cran.rproject.org∕web∕packages∕lme4/)   with   pvalues
calculated using the pval.fnc function from the languageR package
(http://cran.rproject.org∕web∕packages∕languageR/)   (Baayen et  al.,
2008).

III. Result
The   participants   generally   used   the   whole   rating   scale   and   as

expected   there   was   a   strong,   statistically   significant   correlation
between tempo and the mean rated difficulty for each participant
(Pearson's  product  moment  correlation,   r=0.89,  n=150,  p  < 0.001).
Figure 1 show the distributions of difficulty ratings at the different
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tempi. The smallest increase in rated difficulty was between tempi of
600 ms and 1200 ms (M = 0.5) which was significantly smaller than
the differences between tempi of 1200 ms and 1800 ms (paired ttest,
t(29)= 5.42, p < 0.001), 1800 ms and 2400 ms (t(29) = 5.63, p < 0.001),
and   2400   ms   and   3000   ms   (t(29)   =   2.69,   p   =   0.012).   The   largest
increase in rated difficulty was between tempi of 1200 ms and 1800
ms   (M=1.6)   which   was   significantly   larger   than   the   difference
between tempi of 600 ms and 1200 ms (t(29)= 5.42, p < 0.001) and
2400 ms and 3000 ms (t(29) = 3.47, p = 0.002). While the difference in
rating between tempi of 1200 ms and 1800 ms was larger than the
difference   between   tempi   of   1800   ms   and   2400   ms   it   was   not
statistically significant (t(29) = 1.66, p = 0.11).

Figure 1.  The distributions of difficulty ratings at the different tempi. The
line connects the median ratings.
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Figure 2.   The distributions of tapping error as a function of rated
difficulty. The line connects the median ratings.

Tapping   error,   as   measured   by   the   standard   deviation   of   the
taptotone   asynchronies,   was   correlated   with   rated   difficulty
(r=0.79,   n=150,   p   <   0.001).   The   increase   in   rated   difficulty   as   a
function of tapping error is also visible in figure 2. This result is hard
to  interpret,  however,  as   tapping error   is  also  known to   increase
linearly with tempo.  As expected tapping error increase with larger
ISIs   (as   shown   in   figure   3)   and   there   was   a   positive   correlation
between tapping error and tempo (r=0.90, n=150, p < 0.001).   There
was a positive correlation between rated difficulty and percentage of
reactive   responses   (r=0.68,   n=150,   p<0.001)   but   the   number   of
reactive responses also increased with slower tempo (see figure 4).

A number of linear mixedeffects models were fitted to asses the
influence   of   tempo,   tapping   error   and   percentage   of   reactive
responses on rated difficulty. The models were fitted on the pertrial
data,   not   data   averaged   over   trials,   and   all   models   included
participant as a random effect. As tempo had the highest correlation
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with rated difficulty a first model only included tempo as predictor.
A second model also included tapping error and percentage and a
likelihood ratio   test   showed  that   it  was   justified  to   include  those
terms (chisquare = 37.8, p < 0.001). A third model added a term for
tapping error relative to tempo, that is, the standard deviation of the
asynchronies   divided   by   ISI.   This   was   the   final   model   and   the
addition of the relative tapping error term was justified according to
a likelihood ratio test (chisquare=5.99,  p=0.014).  All slopes in the
final model deviated significantly from zero except for the slope for
the   tapping   error,   probably   due   to   the   inclusion   of   the   relative
tapping error term. The final model is summarized in table 1. 

Predictor B β p

ISI 0.0015 0.65 < 0.001

SD(asynchrony)/ISI 9.36 0.13 0.014

% reactive responses 1.76 0.11 < 0.001

SD(asynchrony) 0.0002 0.01 0.90

Table 1.  A summary of  the  linear mixedeffects  model predicting
rated difficulty.  Collumn B show the raw slopes of the predictors
while collumn   show the standardized slopes.β
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Figure 3. The tapping error as a function of tempo.

Figure   4.  The   percentage   of   reactive   responses   as   a   function   of
tempo. 
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IV. Discussion
The result   strongly support   the  notion that   subjective difficulty

increases with slower tempo as this was the case for all participants.
While difficulty increased monotonically as a function of tempo the
largest increase was between the tempi of 1200 ms and 1800 ms. This
agrees  with Repp's   (2006)  description of  a subjective slower  limit
were   rhythm   production   goes   from   being   effortless   to   being
cognitively demanding. After having finished the session many of
the participants also expressed that tapping to the slow tempi felt
very taxing and that there was a great contrast between tapping at
the slow tempi and at the fastest tempo. The mixed model analysis
showed   that   tempo,   tapping   error   and   percentage   of   reactive
responses all affected the participants rating of difficulty. Of these,
tempo was by   far   the  most   influential   factor  as   the  standardized
slopes   in   table   1   show.   Still   participants   are,   to   some   degree,
sensitive   to   their  own tapping errors  which   then   influences   their
subsequent difficulty rating. 

In this study there was relatively few ISIs levels distributed over a
quite wide range. In a future study it would be interesting to narrow
down the range to around 600 to 2000 ms and try to pinpoint where
subjective difficulty increases the most. Another question remains:
Why is there an upper limit of rhythm perception at all? This is hard
to answer without addressing the larger question: What is the neural
mechanism behind rhythm perception? A promising framework for
explaining   this   mechanism   is   the   resonance   theory   of   rhythm
perception and production which postulates that rhythm is coded as
a multifrequency pattern of oscillating neural circuits (Large, 2008).
The oscillating circuits can only code for rhythms that are as slow as
the   slowest   circuit   which   would   then   explain   the   existence   of   a
slower limit of rhythm perception.

Acknowledgement
The   first   author   gratefully   acknowledges   support   from   the

Linnaeus   environment   Thinking   in   Time:   Cognition,
Communication   and   Learning   (CCL),   Swedish   Research   Council
grant number 349 20078695. 

10



References
Bååth,   R.   (2011).   Construction   of   a   Low   Latency   Tapping   Board.

LUCS minor, 17.

Baayen,   R.,   Davidson,   D.,   and   Bates,   D.   (2008).   Mixedeffects
modeling   with   crossed   random   effects   for   subjects   and   items.
Journal of Memory and Language, 59(4):390–412.

Large,   E.   (2008).   Resonating   to   musical   rhythm:   Theory   and
experiment. The psychology of time, pages 189–231.

Mates,   J.,   Müller,   U.,   Radil,   T.,   and   Pöppel,   E.   (1994).   Temporal
Integration in Sensorimotor Synchronization.  Journal of Cognitive
Neuroscience, 6(4):332–340.

McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., and Miller,
N.   S.   (2006).   The   time   of   our   lives:   life   span   development   of
timing   and   event   tracking.  Journal   of   experimental   psychology.
General, 135(3):348–67.

Miyake,   Y.,   Onishi,   Y.,   and   Pöppel,   E.   (2004).   Two   types   of
anticipation   in   synchronization   tapping.  Acta   neurobiologiae
experimentalis, 64(3):415–26.

R Development Core Team (2010). R: A Language and Environment for
Statistical   Computing.  R   Foundation   for   Statistical   Computing,
Vienna, Austria.

Repp,   B.   (2007).   Perceiving   the   numerosity   of   rapidly   occurring
auditory events in metrical and nonmetrical contexts.  Attention,
Perception, & Psychophysics, 69(4):529–543.

Repp,  B.  and Doggett,  R.   (2007).  Tapping to  a  very slow beat:  A
comparison   of   musicians   and   nonmusicians.  Music   Perception,
24(4):367–376.

11



Repp, B. H. (2005). Sensorimotor synchronization: A review of the
tapping literature. Psychonomic Bulletin & Review, 12(6):969.

Repp,   B.   H.   (2006).   Rate   limits   of   sensorimotor   synchronization.
Advances in Cognitive Psychology, 2(2):163–181.

van   Noorden,   L.   and   Moelants,   D.   (1999).   Resonance   in   the
perception   of   musical   pulse.  Journal   of   New   Music   Research,
28(1):43–66.

12



Paper II

Bååth, R., Lagerstedt, E., and Gärdenfors, P. (2014). A prototype-based
resonance model of rhythm categorization. i-Perception 5(6) 548–558;
doi:10.1068/i0665



i-Perception (2014) volume 5, pages 548–558

dx.doi.org/10.1068/i0665 perceptionweb.com/i-perceptionISSN 2041-6695

Rasmus Bååth
Lund University Cognitive Science, Lund University, LUX, Lund, Sweden; e-mail: rasmus.baath@lucs.lu.se

Erik Lagerstedt 
Lund University Cognitive Science, Lund University, LUX, Lund, Sweden; e-mail: lagerstedt.erik@gmail.com

Peter Gärdenfors
Lund University Cognitive Science, Lund University, LUX, Lund, Sweden; e-mail: peter.gardenfors@lucs.lu.se
Received 25 June 2014, in revised form 1 October 2014; published 4 November 2014

Abstract. Categorization of rhythmic patterns is prevalent in musical practice, an example of this 
being the transcription of (possibly not strictly metrical) music into musical notation. In this article we 
implement a dynamical systems’ model of rhythm categorization based on the resonance theory of 
rhythm perception developed by Large (2010). This model is used to simulate the categorical choices 
of participants in two experiments of Desain and Honing (2003). The model accurately replicates 
the experimental data. Our results support resonance theory as a viable model of rhythm perception 
and show that by viewing rhythm perception as a dynamical system it is possible to model central 
properties of rhythm categorization.

Keywords: categorical perception, rhythm perception, computational modeling, music perception, dynamical 
systems, resonance theory.

1 Introduction
Music is a nondiscrete art form since it exists in the auditory domain where differences in rhythm, 
pitch, and timbre are continuous. However, when this continuous domain is described, discrete catego-
ries are often used, e.g., pitch is categorized as scale notes. Rhythm is also the subject of categoriza-
tion, and an example of this is the transcription of the rhythm of a piece of music into musical notation. 
This process constitutes a categorization, as the number of ways to notate a rhythmic sequence is finite 
and different rhythmic sequences can be notated in the same way. Desain and Honing (2003) showed 
in two experiments that listeners reliably experienced rhythms as belonging to rhythmic categories and 
that categorizations were strongly influenced when the listeners were primed with a metric beat before 
hearing a rhythm. Furthermore, participants agreed to a large degree on which rhythms belonged to 
what category. Just as with categorization of other kinds of stimuli (c.f. Jäger, 2010, on color catego-
ries), the categories were roughly convex with respect to a temporal performance space as discussed 
in Section 3 (Gärdenfors, 2000). Honing (2013, p. 379) concludes that: “It is puzzling, however, that 
although meter was shown to exert a strong influence on the recognition of rhythm […] existing com-
putational models of meter can explain this phenomenon only to a small extent.”

In this article we show that an oscillation-based, resonance theory model of rhythm perception 
(Large, 1996, 2010) can replicate many of the findings of Desain and Honing (2003). Although oscilla-
tor models have previously been applied to many different aspects of music perception (e.g., Angelis, 
Holland, Upton, & Clayton, 2013; Large, 1996, 2010), such models have not previously, to our knowl-
edge, been applied to categorical perception. Our results support the notion that resonance theory is 
a viable model of rhythm perception and show that by viewing rhythm perception as a dynamical 
system it is indeed possible to model the properties of categorical rhythm perception. Furthermore, 
these results suggest that oscillator models can be applied to other types of categorical perception, for 
example, pitch perception and vowel perception.

Resonance Theory and Rhythm Perception
In the field of music perception, rhythm refers to a temporal pattern of sound onsets (McAuley, 2010). 
A rhythm in this sense does not have to be periodic or recurrent. This is in contrast with how that 
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word is used in other fields (cf. circadian rhythm or delta rhythm). A related concept that does involve  
periodicity is beat. When listening to a piece of music, a common response is to move one’s body with 
a perceived periodic pulse (Snyder & Krumhansl, 2001), that pulse being the beat of the correspond-
ing piece of music. It is common that not all beats in a piece of music are perceived as being equally  
accented (Palmer & Krumhansl, 1987) and a periodically recurring pattern of strong and weak beats is 
called a meter. For example, a duple meter would imply that every second beat is perceived as having 
a stronger accent while every third beat is perceived as having a stronger accent in the case of a triple 
meter. Rhythm perception and the ability to entrain to a musical beat was long thought to be uniquely 
human and, while it has recently been shown that some vocal mimicking species are, to some degree, 
able to move in synchrony with a beat (Schachner, Brady, Pepperberg, & Hauser, 2009), humans are 
still unique in their aptitude for rhythmic processing. Already infants have been shown to have a sense 
of rhythm (Honing, Ladinig, Háden, & Winkler, 2009) and there exists only one documented case of 
“beat deafness” (Phillips-Silver et al., 2011), that is, the inability to reliably synchronize to a musical 
beat.

Modeling of human timing and rhythm perception has a long history, one influential model being 
that described by Wing and Kristofferson (1973), which is based on an information theoretic perspec-
tive. Like many such models (cf. Repp, 2005), it models a participant’s behavior in situations where 
isochronous timing responses are being elicited. An alternative to the information theoretic perspec-
tive is to take a dynamical systems perspective and model time and rhythm perception as an emergent, 
dynamic phenomenon. A number of models of this kind have been proposed (e.g., Large, 1996; Todd, 
O’Boyle, & Lee, 1999; van Noorden & Moelants, 1999). Here, the term resonance theory (cf. Large, 
2010) will be used to refer to such models. The general idea of resonance theory is that an external 
auditory rhythm can be represented by the amplitude of internal oscillatory units. These oscillatory 
units are coupled to the external rhythm and are by definition periodic while the external rhythm does 
not have to be periodic. Given a rhythm sequence as input, the basic output of a resonance theory 
model, or resonance model for short, is the amplitude response of the oscillators over time. Resonance 
theory does not dictate a specific model but rather incorporates a number of related models which all 
can be considered dynamical system models.

Resonance theory provides a compelling framework since it is biologically plausible, has a solid 
base in dynamical systems theory and is able to model many aspects of meter and rhythm percep-
tion (Angelis et al., 2013; Large, 2000). A number of neuroimaging studies have shown connections 
between neural resonance and rhythm perception (e.g., Brochard, Abecasis, Potter, Ragot, & Drake, 
2003; Fujioka, Trainor, Large, & Ross, 2012; Schaefer, Vlek, & Desain, 2011). One persuasive study 
that clearly showed that rhythm perception involves neural oscillatory activity is that of Nozaradan, 
Peretz, Missal, and Mouraux (2011). They found that playing a rhythmic beat to a participant elicited 
a sustained periodic neural response, as measured by EEG, that matched the frequencies of the beat.

As already noted, to our knowledge, resonance theory models have not previously been used to 
model categorical rhythm perception. One reason for this might be that while the amplitude response 
of the oscillators to a rhythm in the resonance model reflects, perhaps even represents, the rhythm 
sequence given as input to the system, it does not give rise to a categorization per se. That is, the state 
of the resonance model depends on the given rhythm sequence, but there is no single well defined set 
of states that can be said to constitute categories. Still, the state of the resonance model can be used 
as the basis of a categorical decision based on learned prototype states or a discrete partitioning of the 
system state space.

If the state of the resonance model is viewed as the basis for a categorical decision then two  
predictions regarding categorical rhythm perception can be made:

A More distinct states will facilitate categorization. Here we use distinct state to refer to a state 
of the resonance model where a small subset of oscillators has a strong amplitude response 
while most oscillators do not. This is in contrast to a nondistinct state where most oscillators 
have a similar amplitude response, that is, there are many competing signals and there is no 
clear single winning candidate among the categories. If some rhythmic sequence was known 
to result in a strongly distinctive state in a resonance model, then it could be predicted that 
a participant in an experimental categorization task would categorize that rhythm sequence 
consistently, and with more confidence than a rhythmic sequence known to result in a less 
distinctive state.
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B Rhythm sequences resulting in similar states are categorized similarly. That is, different 
rhythm sequences resulting in similar states when used as the input to a resonance model 
should be categorized similarly by participants in an experimental task. Here similarity has to 
be defined using a similarity measure such as Euclidean distance or cosine similarity.

In order to test these predictions, data from the rhythm categorization task from the study by 
Desain and Honing (2003) were used.

The Rhythm Categorization Study of Desain and Honing (2003)
Desain and Honing (2003) employed a novel paradigm where musically educated participants were 
asked to categorize 66 different rhythm sequences by transcribing them into common music notation. 
The sequences all lasted for one second and consisted of four tone onsets and were therefore uniquely 
determined by the three interonset intervals (IOI) between the tones. Two such possible sequences are 
shown in Figure 1a and 1b where a possible categorization of 1b could be ♪♪ (or 1-1-2 when written 
as an integer ratio). Any possible 1 s, four-tone rhythm sequence can be thought of as a point in a three 
dimensional triangular performance space that determines the lengths of the three IOIs as shown in 
Figure 1. The 66 rhythm sequences in Desain and Honing’s experiment were constructed so that they 
evenly covered the area in the performance space with the constraint that no IOI would be shorter than 
153 ms. The location of these sequences in the performance space can be seen in Figure 2b where each 
circle marks the position of one of the 66 sequences.

In a first experiment, 29 highly trained musicians categorized the rhythm sequences and the result 
was that even though the rhythms occurred on a more or less continuous time scale, the participants 

Figure 1. (a) and (b) show examples of two possible rhythms and their placement in the triangular performance 
space (c) defined by Desain and Honing (2003). All one second long, four sound rhythms can be represented as a 
point in this space. (From Honing, 2012 with permission).
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tended to stick to a limited number of categories, with 1-1-1 being the most common. Twelve catego-
ries, all categories considered, stood out as being the most common and the location in performance 
space of these categories are shown in Figure 3a. One participant was presented with all 66 rhythm 
sequences at six different occasions and, as a measure of consistency, the entropy was calculated of 
her responses for each rhythm. These entropy values were mapped on to the performance space and 
the resulting entropy map is shown in Figure 2a.

In a second experiment, two metrical conditions were added. Duple meter versions of the rhythms 
were constructed by adding a repeated, 1-s long, two sound beats to the beginning of the rhythms, 
thus inducing a 2/4 meter feeling. Triple meter versions of the rhythms were similarly constructed by 
adding a three sound beat instead. This resulted in three different metrical conditions: The original no 
meter condition, a duple meter condition, and a triple meter condition. Maps over what categories the 
participants ascribed to the different rhythms, similar to the map shown in Figure 3a, were constructed 
(shown on p. 358 in Desain & Honing, 2003). A main finding was that the participants’ categorization 
in the no meter condition was significantly more similar to the participants’ categorization in the duple 
meter condition than in the triple meter condition.

For the purpose of the current study, data from Desain and Honing were downloaded from a web 
resource containing supplementary material (http://www.mcg.uva.nl/categorization). The data down-
loaded were the information regarding which of the 12 most common categories were most often 
ascribed to each of the 66 rhythm sequences for the no meter condition in experiment 1, and the duple 

Figure 2. Maps over categorization consistency. (a) shows the relative entropy of the categorical choices for 
the single participant given the same rhythm sequences multiple times from Desain and Honing (2003, used 
with permission). The relative entropy is calculated as the Shannon entropy divided by the theoretical maximum 
attainable entropy. (b) shows the signal-to-noise measure calculated from the activation patterns generated by the 
resonance model.

Figure 3. Categorization maps for (a) the experimental data from Desain and Honing (2003, used with permission) 
and (b) the resonance model. The transparent areas in (a) indicate areas where there was a large amount of 
disagreement between the participants.

http://www.mcg.uva.nl/categorization
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and triple meter conditions in experiment 2. A rhythm sequence was excluded if none of the 12 most 
common categories was the most common for that specific rhythm. Information regarding the cat-
egorization entropy for the sole participant presented with the rhythms multiple times was calculated 
manually from Figure 2a.

Resonance Theory and Rhythm Categorization
It is possible to test the two predictions from resonance theory concerning how rhythms are catego-
rized by implementing a resonance model that consists of an array of oscillators (as in Large, 2000); 
see Section 2 for more details. We used the rhythm stimuli from Desain and Honing (2003) as input to 
such a model and compared the results with the experimental data using the methods outlined below. 
The output of a resonance model is a multidimensional time series with the same number of dimen-
sions as the number of oscillators in the model. This high dimensional representation might be difficult 
to work with directly, however, and a more convenient representation is given by creating an activa-
tion pattern, A, by summing the amplitude responses of each oscillator over time, as in
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where ai,t is the amplitude for oscillator i at time t while ts and te are the start and end time steps for the 
summation. Before the resonance model is given any input it is in a resting state and it takes a number 
of time steps before the system is activated by the stimuli. Therefore, it is not necessarily desirable to 
sum over the whole extent of the duration of the rhythm sequence and an activation pattern created by 
summing over the later time steps may represent the rhythm sequence better than an activation pattern 
created by summing over all time steps. By considering the activation pattern of a resonance model as 
a point in an n-dimensional space, n being the number of oscillatory units, this space can be partitioned 
into regions corresponding to rhythm categories and used to produce categorical decisions (following 
the general model of concepts from Gärdenfors, 2000). Given that entire equivalence classes of dif-
ferent spectra can give rise to the same color perception, the potential relation between the activation 
pattern of a resonance model and such a rhythm categorization is analogous to the relation between 
the hue, saturation, and lightness of a color percept and a color categorization. That is, a color percept 
can similarly be viewed as a point in a three-dimensional space with dimensions hue, saturation, and 
lightness and this space can be partitioned into regions, each representing a color category, and used 
to produce categorical color decisions.

Prediction (A) implies that rhythm sequences resulting in distinctive states (in the sense discussed 
earlier) in a resonance model should be the sequences that are categorized more consistently. In Desain 
and Honing’s data, a measure of consistency is the categorization entropy for the participant presented 
with the rhythm sequences multiple times. The prediction is that this measure of consistency is cor-
related with a measure of distinctness of the state of a resonance model. Signal-to-noise ratio is a com-
mon measure of distinctness of a signal and a modified version of this measure can be used to quantify 
the distinctness of the state of a resonance model. For a resonance model that has been given a rhythm 
sequence as input, the activation pattern is first calculated according to Equation (1). In this activation 
pattern, the signal As is defined as being the Ai with the highest amplitude. The signal-to-noise ratio is 
then defined as:
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where the sum in the denominator is over the rest of the Ai oscillator amplitudes. Notice that this meas-
ure of consistency should be negatively correlated with the entropy measure of Desain and Honing: As 
the signal gets weaker relative to the noise, the entropy of the participants’ choices of category should 
go up.

Prediction (B) implies that rhythm sequences resulting in similar states when given as input to a 
resonance model should be categorized similarly in an experimental task. A resonance model does not 
directly produce a categorization, but this is not required for testing this prediction. It is possible to 
compare the resulting states of two rhythm sequences by calculating the respective activation patterns 
and comparing these. A suitable similarity measure is given by considering the activation patterns as 
points in an n-dimensional space, where n is the number of oscillators in the resonance model, and 
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then taking the Euclidean distance between these two points, where a shorter distance corresponds to 
more similar states. Considering the twelve most common rhythm categories chosen by the partici-
pants in Desain and Honing’s study as prototype categories, it is possible to use the rhythm sequences 
corresponding to these categories to generate prototype activation patterns. For example, to generate 
the prototype activation pattern for the category 1-2-1 (as shown in Figure 4) the rhythm sequence 
with IOIs 0.25 s, 0.5 s, and 0.25 s would be used as input to the resonance model. A rhythm sequence’s 
activation pattern can then be compared with these prototypes’ activation patterns and the prototype 
category with the most similar activation pattern can be assigned to that rhythm sequence. In this 
way, all rhythm sequences can be assigned a category and these categories can be compared with the 
categories selected by the participants in Desain and Honing’s study. Specific hypotheses are then that 
a resonance model categorization of the stimulus used by Desain and Honing should be similar to 
the categorization made by the participants in the no meter, duple meter, and triple meter conditions. 
Furthermore, as the participants’ categorizations of the rhythm sequences in the no meter condition 
were more similar to the categorizations made in the duple meter condition than to the categorizations 
made in the triple meter condition, the same relation should be present in the categories generated by 
the resonance model.

2 Methods
The resonance model was implemented in MATLAB (http://www.mathworks.se/products/matlab/) us-
ing the Nonlinear Time-Frequency Transformation Workbench (Large & Velasco, in preparation). The 
model consisted of 145 Hopf oscillators, a type of oscillator that entrains to periodic input and where 
the amplitude of an oscillator depends on that oscillator’s intrinsic frequency and the periodicities of 
the input. The differential equation of the Hopf oscillator used is:

 (3)

α = 0.1, β = 0.1, ε = 0.5

where α is a damping term, β is an amplitude compression factor and ε is a scale factor. The last term 
in Equation (3) is the resonant term, which is dependent on the stimulus x. These parameter values and 
this specific formulation of the Hopf oscillator were not chosen on the basis of any specific theoretical 
considerations (see Section 4 for a discussion of these choices); many other configurations are possible 
and a more general form of the Hopf oscillator is derived in Large, Almonte, and Velasco (2010). The 
oscillators’ intrinsic frequencies were centered around 1 Hz with frequencies logarithmically distrib-
uted from 0.25 Hz to 4 Hz. Figure 5 shows an example of the activation over time for this network 
of oscillators given the rhythm pattern [0.5, 0.375, 0.125]. The method used for creating activation 
patterns was that in Equation (1) with ts set to the time step corresponding to half the stimulus length 
and te set to the last time step. The MATLAB code for the model and both input data and the result-
ing output are available on request from the first author. The code for the Nonlinear Time-Frequency 

Figure 4. An example of an activation pattern generated by feeding the resonance model a rhythm with IOIs  
0.25 s, 0.5 s, and 0.25 s.

http://www.mathworks.se/products/matlab/
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Transformation Workbench (Large & Velasco, in preparation) has not yet been publicly released and 
has to be requested separately.

The 66 rhythm sequences from the no meter condition were encoded and given as input to the 
model yielding 66 activation patterns. In accordance with Desain and Honing (2003), the repeated 
rhythm pattern in each sequence was 1-s long and repeated three times, creating an eight bar long 
sequence of where the third, fifth, and seventh bar contained the rhythm pattern. The IOIs in the 
sequences range from 3/19 s to 13/19 s in steps of 1/19 s, creating the grid seen in Figures 2 and 3. This 
was repeated for the sequences from the duple and triple meter conditions. Additionally, the sequences 
of the prototype categories were encoded in the same way as in the no meter condition sequences, 
yielding 12 prototype activation patterns.

Analysis
The signal-to-noise ratio, defined by Equation 2, was calculated for each of the 66 rhythm sequences 
in the no meter condition. Here a higher value represents a stronger signal and the signal-to-noise ratio 
is taken as a measure of how easy it is to classify the corresponding sequence. For each of all 198 
rhythm sequences, the Euclidean distance to each of the twelve prototype sequences was calculated. 
A sequence is categorized as the prototype it is closest to in the Euclidean space, with each dimension 
representing one oscillator in the oscillatory network. The resulting categories for the no meter condi-
tion can be seen in Figure 3.

Randomized permutation tests (Ernst, 2004) were used to compare the categorization of the 
rhythm sequences from the behavioral data with the categorization from the resonance model. Given 
two different categorizations of the 66 rhythms, a similarity score is calculated as the number of 
rhythms that are given the same category by both categorizations. In the cases where the most common 
categorization of a specific rhythm sequence in the behavioral data is not one of the 12 prototype cat-
egories this rhythm sequence is excluded from further analysis. Next, all category labels are randomly 
reassigned to the rhythm sequences and a new similarity score is calculated. This is repeated 10,000 
times, yielding a randomized permutation distribution of similarity scores. This is the distribution that 
is expected under the null hypothesis that there is no relation between the categorization by the model 
and the categorization by the participants. A p-value is then calculated as the probability of achieving 
the actual similarity score, or a more extreme similarity score, given the distribution of randomized 
similarity scores. The permutation tests were two-tailed (calculated according to the method in Ernst, 
2004) in all cases except where noted.

3 Results
The signal-to-noise measure was calculated for all activation patterns in the no meter condition and, 
as hypothesized, a negative correlation between Desain and Honing’s (2003) entropy measure of con-
sistency and the signal-to-noise ratio was found (Pearson product-moment correlation, r = −0.32, p = 
0.009). These two measures of consistency are expected to have an inverse relationship, that is, low 
entropy in the experimental data indicates high consistency, while a low signal-to-noise ratio in the 
simulated data indicates low consistency. A comparison between these two measures of consistency 

Figure 5. An example of oscillator activation over time for an oscillator network given the rhythm pattern  
[0.5, 0.375, 0.125].
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for the experimental and the simulated data is shown in Figure 2. To facilitate comparison, the color 
scales have been matched so that red indicates low consistency while blue indicates high consistency. 
The measures of consistency are comparable, showing the same broad patterns in both the simulated 
(Figure 2b) and experimental data (Figure 2a).

The activation patterns for all of the three metrical conditions were compared with the prototype 
activation patterns using the Euclidean distance as the similarity measure and each rhythm sequence 
was assigned the category of the most similar prototype. A comparison with the categories assigned in 
the experimental task for the no meter condition is shown in Figure 3. The categorizations agree to a 
large extent. The 1-1-1 category is the most common in both the experimental and the simulated cat-
egorizations and both categorizations exhibit roughly convex category regions. Here convexity refers 
to the property that for every pair of points within a geometric object there exists a line, also within 
the object, that connects the points. The convexity of the category regions accords with Gärdenfors’ 
(2000) general prediction for category representations. A randomized permutation test also showed 
that the categorization generated by the resonance model and the categorization from Desain and 
Honing’s data were more similar than would be expected by chance alone for all three of the metrical 
conditions. In the no meter condition (shown in Figure 3) the agreement was 71% (p < 0.001) and in 
the duple and triple meter conditions 67% (p < 0.001) and 61% (p < 0.001), respectively.

Figure 6 shows the oscillator activation over time and the corresponding dynamic categorization 
given a rhythm sequence that was assigned low entropy in Desain and Honing’s data. Compare this 
with Figure 7 that shows the oscillator activation and dynamic categorization for a rhythm that was 
assigned high entropy in Desain and Honing’s data. For the low entropy rhythm the signal-to-noise 
ratio is high and the categorization is more stable. For the high entropy rhythm, however, the signal-to-
noise ratio is low and the categorization in never stable, that is, there never emerges one clear winner.

In the experimental data, the categorization of the duple meter condition was more similar to the 
no meter condition than was the triple meter condition, and this was also the case for the simulated 

Figure 6. The oscillator activation and corresponding categorization over time for an oscillator network given a 
rhythm pattern that scored low entropy in Desain and Honing (2003).
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Figure 7. The oscillator activation and corresponding categorization over time for an oscillator network given a 
rhythm pattern that scored high entropy in Desain and Honing (2003).

categorizations. The agreement between the no meter condition and the duple and triple meter condi-
tions for the simulated categorizations was calculated as being 77% and 71%, respectively with duple 
meter agreeing with the no meter categorization in 6 percentage points more of the cases (p = 0.045, 
one-tailed randomized permutation test).

4 Discussion
Many models of categorical perception have been based on neural networks and there exist several 
models of rhythm perception based on neural networks (Desain & Honing, 1989; Miller, Scarborough, 
& Jones, 1992; Mozer, 1993). We believe that using a dynamical system of resonating oscillators 
provides a physiologically more plausible way of modeling such phenomena. By modeling rhythm 
perception in such a system, we have shown that it is possible to explain empirical findings of listen-
ers’ categorical perception of rhythm. Our oscillator model has been able to accurately replicate the 
experimental data from Desain and Honing (2003). A possible concern is whether the model is sensi-
tive to the choice of parameters. However, a parameter sensitivity analysis has not been performed 
as the purpose of the model is not to predict the experimental data as well as possible nor do we 
claim that the specific model configuration could not be the subject of improvements. What is claimed  
is that the model supports the notion that resonance theory is a viable model of rhythm perception and 
that by viewing rhythm perception as a dynamical system it is possible to model properties of rhythm 
categorization.

An advantage of oscillator models is that they can be generalized to other kinds of categorical 
perception. Examples from the domain of music are pitch perception and tonality perception (Large, 
2010). Oscillatory models are not confined to temporal processes and can be used for other modali-
ties. The main importance of our model is perhaps that the example of how oscillator models can be 
constructed for categorical rhythm perception can serve as inspiration for similar models of other 
cognitive phenomena. A general question is whether the convexity of rhythm categories generated 
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from our model generalizes to other areas of categorical perception when oscillator models are used. If 
so, it could be interpreted as a general mechanism that can explain the convexity of categories as put 
forward by Gärdenfors (2000).
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Subjective Rhythmization: A Replication and an
Extension

Rasmus Bååth*, Kristín Ósk Ingvarsdóttir

Lund University Cognitive Science, Sweden.

Abstract

Subjective rhythmization (SR) is the phenomena that the sounds of a
monotone metronome sequence are experienced as having different
intensity  and  that   these  differences  follow a regular  pattern.  This
study   aimed   to   replicate   and   extend   the   two   studies   that   have
employed the original SR experimental paradigm (Bolton, 1984; Vos,
1973). The extensions included using a wider range of tempi and a
large   number   of   participants.   The   result   of   the   study   was   in
accordance with these two earlier studies. In addition to the original
SR task, a novel task was administered where the participants were
not   explicitly   told   about   the   existence   of   the   phenomena.   The
responses of the participants were in agreement with that subjective
rhythmization was experienced. This  indicates that SR is a robust
phenomena that can be experience even without it having to being
primed by verbal instructions.  

1. Introduction

When listening to a piece of music a common response is to move
one's body to a perceived periodic pulse (Snyder and Krumhansl,
2001). That pulse is the  beat  of the corresponding piece of music, a
series  of   subjectively  isochronous  (equally  spaced  in   time)  events
that are felt as being pronounced or accented. The beat is established
by the rhythm of the musical events and in a piece of music the beat
and musical events tend to coincide. It is not necessary that every
beat is marked by a musical event, however, and the perception of a

* Corresponding author. E-mail: rasmus.baath@lucs.lu.se 
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beat can be sustained even if   there are conflicting musical  events
(Large and Palmer, 2002). 

It is not common that all beats in a piece of music are perceived as
being   equally   accented   (Palmer   and   Krumhansl,   1987)   and   a
periodically recurring pattern of strong and weak accents is called a
meter. For example, a duple meter would imply that every second
beat is perceived as having a stronger accent while every third beat
is perceived as having a stronger accent in the case of a triple meter.
Perceiving   the   beat   and   meter   of   a   piece   of   music   often   comes
natural and it does not require the listener to actively attend to the
music. It has even been shown that some form of beat induction is
functional in newborn infants (Honing et al., 2009).

One   perceptual   phenomena   that   shows   our   tendency   to
experience   metrical   structure   is  subjective   rhythmization  (SR),   a
phenomena   that   occurs   when   one   listens   to   a   sequence   of
isochronous, identical sounds. A pattern of accents will emerge that
has   a   metrical   structure   and   gives   the   impression   that   there   are
groups of sounds. Even though the sounds are objectively identical
they sound subjectively different.  This  phenomena was described
already   in   the   18th   century   (Kirnberger,   1776)   but   was   first
investigated by Bolton (1894) who systematically played monotone
metronome sequences at different tempi to a number of participants
and   recorded   their   reactions.   That   study   was   later   partially
replicated   by   Vos   (1973)1,   and   both   studies   agree   on   some
characteristics   of   SR.   The   most   common   groupings   participants
experience are two and four,  the groupings of common meters of
western music. Group size and tempo interacts as participants tend
to perceive smaller groupings at slower tempi and larger groupings
at  faster tempi,   though no groupings larger  than eight have been
reported (Bolton, 1894; Vos, 1973). There is a limit to the range of
tempi where SR can be experienced. Bolton found that participants'
experience of SR ceased when the interstimuli interval (ISI) between
consecutive sound onsets was above 1500 ms. After reviewing the

11 Vos (1973) has not been translated into English, but the data from that thesis has been 
reanalyzed by van Noorden and Moelants (1999).
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literature Fraisse (1982) proposed that the limit was around an ISI of
1800 ms. Here is a connection to rhythm production as this limit is in
the same range as when sensorimotor synchronization (e.g.  finger
tapping) begins to feel laborious (Repp, 2006; Bååth and Madison,
2012).

The present study aim to replicate the result of Bolton (1894) and
Vos   (1973)  using  a  wide  range  of   tempi  and  a   larger  number  of
participants   than   in   the   earlier   studies.   Such   a   replication   is
presented in Experiment 1. A second aim was to verify the existence
of the SR phenomena. In previous studies SR has been investigated
by explicitly asking what groupings participants experience when
listening to a metronome sequence. By explicitly asking participants
about   grouping   it   is   possible   that   participants   get   primed   to
experience  SR.   In  Experiment  2  we  used a  novel   task  where   the
response of a participant depends on whether he or she experiences
SR but where SR is not mentioned in the task instructions. 

2. Experiment 1

2.1 Method

Participants   were   recruited,   and   the   experiment   administered,
using the online service Amazon Mechanical Turk (Buhrmester et
al., 2011). Out of the 132 participants 111 reported having experience
playing   a   musical   instrument.   The   task   instruction   given   to   the
participants were as follows:

“This   task   requires   your   full   attention.   Below   are   six   sound
sequences of clicks. You should listen to each sound sequence and
rate if you feel any grouping or subdivision of the clicks, however
weak   or   subtle.   For   example,   if   you   hear
"TICKtickTICKtickTICKtick" that would be groups of two, while
if  you   hear   "TICKtickticktickTICKtickticktick"   that   would   be
groups of four. This task  is not  about whether there are groups in
the sequences, it is about if you feel any grouping. Now listen to and
rate the sequences one at a time in the order they are displayed.”

3



The   participants   were   then   given   six   monotone   metronome
sequences with ISIs of 200 ms, 300 ms, 400 ms, 600 ms, 800 ms and
1500 ms in a randomized order. Each sequence was 15 s long and
consisted of 10 ms long, 440 Hz sine wave sounds. After listening to
a sequence the participant indicated what grouping he or she felt by
using a list with the alternatives “no group” and “groups of 2” up to
“groups of 8”.

2.2 Result

The result replicated many of the findings of Bolton (1894) and
Vos (1973) and Figure 1 shows the reported experienced grouping
from   six   participants.   In   general,   participants   reported   larger
groupings at faster tempi, as can be seen in participant C or F. Some
participants were consistent, like participants A and B, while some
were less consistent, like participant C and E. There was a tendency
that  some participants   (for  example,  participant  D) answered “no
grouping” on the faster tempi (200 ms and 300 ms).

The most reported groupings were two, four and eight with five
and seven being rarely reported at all. Table 1 show how often the
participants reported each possible grouping. Figure 2 show for each
ISI level the proportion of participants that reported each grouping.
The slower limit of SR was estimated to an ISI of 1500 by Bolton. In
the   current   study   no   such   sharp   limit   was   found,   however,   a
majority   of   the   participants   (81   %)   reported   experiencing   no
grouping at an ISI of 1500 ms.
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Figure 1: The reported perceived group size for six of the 132 
participants in Experiment 1. Note that a group size of one 
corresponds to the participant having reported “no grouping”.
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Grouping Peak ISI % of responses

1 (No grouping) 1500 34 %

2 600 23 %

3 300 7 %

4 300 27 %

5 200 < 1 %

6 300 1 %

7 200 < 1 %

8 200 6 %

Table 1: Summary of the reported groupings in Experiment 1.

Figure 2: Percentage of reported groupings as a function of ISI. A 
group size of 1 corresponds to “no grouping”.
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Figure 3: Loglog plot of mean group size as a function of ISI. The 
line show the best fitting regression line.

Figure 3 shows the mean group size reported for each ISI level
with both axes being on the log scale. This relation appears highly
linear,  a   result  not  previously  reported  in   the   literature.  A  linear
regression with log2  group size as the dependent variable and and
log2  ISI  level as the independent variable gave an intercept of 8.1
( 95% bootstrap2 confidence interval [5.8, 10.5]), a slope of 0.77 (95%
CI [1.0, 0.53]) and an R² of 0.50 (95% CI [0.23, 0.77]).

3. Experiment 2

3.1 Method

The   purpose   of   Experiment   2   was   to   investigate   whether   the
phenomena   of   SR   would   influence   participants   responses   even
though SR was not mentioned in the instructions nor suggested in
any way. Amazon Mechanical Turk was again used to recruit and
administer the task to 120 participants, 60 in each of two conditions,
where the only difference between the conditions were whether the
following task instructions used the word second or fourth:

2 The bootstrap confidence intervals (CI) were calculated using 10,000 resamples.
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“In this task we are interested in if it is possible to feel very small
differences  in   loudness.  Below are 14  click sequences,   in  some of
them all clicks are equally loud and in some of them every [second,
fourth] click is a little bit louder. The difference in loudness will be
very small. Listen to the sequences, in the order they are given, and
for each sequence try to feel if the clicks are equally loud or if every
[second, fourth] click is louder.”

The 14 click sequences were the same as in Experiment 1, with the
addition   of   a   2000   ms   ISI   sequence,   each   given   twice   in   a
randomized order.  That  is,  despite  the  task instructions,  all  clicks
were actually equally loud. After having listened to each sequence
the participant was asked whether he or she perceived a difference
in   loudness   or   not.   If   the   participant,   without   knowing   it,
experienced SR when  listening   to   the   sound sequence  we  would
expect   him   or   her   to   be   more   likely   to   report   a   difference   in
loudness. If a participant was given the secondinstructions, to listen
for a difference on every second click, we hypothesized that he or
she would direct attention towards SR with a grouping of two and
therefore be more likely to report a difference at an ISI of around 600
ms   (cf.   Figure   2).   Similarly,   if   a   participant   was   given   the
fourthinstructions and was listening for a difference on every fourth
click,  we  would expect  him or  her   to  be  most   likely   to   report  a
difference around an ISI of 300 ms.

3.2 Result

There   was   a   tendency   for   the   participants   given   the
secondinstructions to report  hearing a difference around an ISI of
600   ms   while   the   participants   given   the  fourthinstructions   were
more likely to report a grouping at the ISIs of 300 ms and 400 ms.
Figure 4 show the probability of reporting hearing a difference for
each ISI   level,  where there is a  clear peak around 600 ms for the
secondcondition   and   around   300   ms   and   400   ms   for   the
fourthcondition. At the ISI levels of 1500 ms and 2000 ms, where the
participants in Experiment 1 largely reported hearing no grouping,
there   is   an   increase   in   reporting   hearing   a   difference   for   the
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fourthcondition. A reason for this could be that at such slow tempi
some participants find it difficult to compare every fourth click and
therefore approach the chance level of 50%.  

Figure 4: The probability of reporting hearing a grouping for the two
instruction conditions in experiment 2.

4. Conclusion

Experiment 1 replicated the main findings of  Bolton (1894) and
Vos (1973):

 Subjective rhythmization is a robust phenomena that
seems to be experienced by most participants.

 The reported experienced grouping is most often two,
four or eight, common meters of western music.

 What grouping that is reported is highly dependent
on the tempo with larger groupings being reported at
faster tempi.
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 Most   participants   do   not   reporting   hearing   a
grouping when the ISI is as slow as 1500 ms.

Experiment 2 confirmed the robustness of SR and showed that SR
influence participants' responses in a task that is quite different from
the original SR task. 

It   should   be   noted   that,   as   both   experiments   used   Amazon
Mechanical   Turk,   the   experiments   were   administered   online
without the usual control of a perceptual experiment.  This can be
viewed both as a weakness and as a strength, a weakness because
there was no control over what environment the participants were in
when doing the experiment, a strength because despite the lack of
control   the result   is  well   in agreement with  the earlier  studies of
Bolton (1894) and Vos (1973).
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Subjective Rhythmization: A Replication
and an Assessment of Two Theoretical

Explanations

Rasmus Bååth

Abstract

Subjective rhythmization is that phenomenon whereby, when
one is listening to a monotone metronome sequence, some sounds
are experienced as accented. These subjectively accented sounds
group the sequence similarly to how the metrical structure of a
piece of music groups the beats. Subjective rhythmization was
first investigated by Bolton (1894); the present study aims at repli-
cating and extending that work. Consistent with Bolton’s results
all participants reported hearing accent patterns when listening to
monotone sequences; the reported group size of an accent pattern
was highly dependent on the tempo of the sequence. A power
relation captured well the relation between the reported group
size and the sequence interstimulus interval. Further, the mean
group size reported in the subjective rhythmization task was
found to correlate with the timing performance in a slow-tempo
tapping task. These results are consistent with the resonance theory
explanation of subjective rhythmization (Large, 2008).

1 Introduction

Rhythm, the temporal organization of distinct sound events, is an in-
tegral part of human speech and music (Patel, 2008). Humans have
an astonishing capability both to perceive and to produce rhythms.
Subjective rhythmization (SR) is one example of this capacity. This is
the phenomenon whereby sounds of a monotone metronome sequence
are experienced as having different intensity and that these intensity
differences follow a regular pattern. In other words, despite the sounds
having objectively equal amplitude, they are perceived as subjectively
different. Bolton (1894) developed an experimental paradigm for in-
vestigating SR; only one other study exists that uses Bolton’s original
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paradigm (Vos, 1973). The current study aims to replicate and extend
Bolton’s and Vos’ work. Extensions include using a wider range of
tempi, employing a larger number of participants and presenting those
participants with a number of auxiliary tasks in addition to the SR task.
The inclusion of the auxiliary tasks is motivated by three decisive pre-
dictions developed from two proposed explanations for SR: the preferred
tempo explanation (Temperley, 1963) and the resonance theory explanation
(Large, 2008).

A typical example of SR is when identical ticks of a clock are per-
ceived as “tick tock” (Brochard, Abecasis, Potter, Ragot, & Drake, 2003;
van Noorden & Moelants, 1999). For this reason, SR has also been called
the clock illusion or the tick-tock effect (Vlek, Schaefer, Gielen, Farquhar,
& Desain, 2011). An alternative way of viewing SR is as the imposition
of a subjective meter onto a sequence of sounds, where no meter is
enforced through physical intensity or physical pitch differences. It has
been pointed out that the term subjective rhythmization is a misnomer
and that a more suitable term would be subjective meter (Large, 2008)
or subjective accentuation (Temperley, 1963).

Subjective rhythmization was discussed already in the 18th century
(Kirnberger, 1776) but not investigated experimentally until Bolton
(1894)’s seminal work. Bolton used apparatus capable of producing
isochronous (temporally equally spaced) sequences of monotone clicks
of equal amplitude. By systematically varying the tempi of the se-
quences he established the following characteristics of SR. Isochronous
sequences of identical sounds produce the impression that some sounds
are louder or more intense than others. The apparent increases in in-
tensity do not appear randomly but recur every nth sound, resulting in
the more intense sounds grouping the sequence. Here n can range from
two up to eight but the most common reported groupings participants
reports are two, three and four: the common metrical groupings of
western music. Group size and tempo are related; participants reports
smaller groupings at slower tempi and larger groupings at faster tempi.
The range of tempi at which SR can be experienced is limited. Bolton
found that SR experience ceases when the interstimuli interval (ISI)
between consecutive sound onsets rises above 1600 ms, though a later
review of Bolton’s results suggested a slower limit of 1800 ms (Fraisse,
1982).

Only one study, that by Vos (1973), which has employed Bolton’s
(1894) experimental paradigm, despite recent interest in the electrophys-
iological properties of SR (e.g., Nozaradan, Peretz, Missal, & Mouraux,
2011; Schaefer, Vlek, & Desain, 2011). Vos’ study, though limited
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by a relatively small number of trials and narrow tempo range of the
stimuli (ISIs of 150 to 800 ms), produced results in accord with Bolton’s.
Subsequent analysis of Vos’s data by van Noorden and Moelants (1999)
emphasizes (1) the dependency between tempo and reported group
size, (2) a propensity toward reporting even-numbered groups, and (3)
an average interval between each group’s onset longer than one second.

1.1 Explanations for Why Subjective Rhythmization Occurs

The literature offers two explanations for SR: one relating to participants’
preferred tempo (Temperley, 1963) and one explaining SR using the
resonance theory of rhythm perception (Large, 2008).

1.1.1 The preferred tempo explanation

When experiencing SR, one hears the sounds of a monotone sequence
as grouped, with the first sound in each group being accented. This
grouping of the sounds can be viewed as a modification of the period
of the sequence, where the group period is defined as the period between
group onsets. An example of such a modification would be when a
participant is given a monotone tone sequence with an ISI of 250 ms and
reports a grouping of two, resulting in a group period of 500 ms. The
preferred tempo explanation is that participants experience a grouping
that results in a group period close to their preferred tempo (Temperley,
1963)so as to facilitate entrainment to the sequence.

A regular observation is that, when participants are asked to tap
an isochronous rhythm at a comfortable rate, the resulting tempi tend
to cluster around a period of 500-600 ms (Fraisse, 1982). This tempo
is called the spontaneous motor tempo (SMT) and has been shown to
be strongly correlated (r = 0.75) with participants’ verbal reports of
preferred beat tempo (McAuley, Jones, Holub, Johnston, & Miller, 2006),
supporting the existence of an intrinsic preferred rate for event tracking;
the SMT may be seen as the tempo where rhythm perception is optimal
(Moelants, 2002).

Present knowledge about SR does not favor the preferred tempo
explanation, however. Especially problematic is the observation that
the group period tends to be above one second (Vos, 1973, as analysed
by van Noorden & Moelants, 1999) which is far from the common
period of spontaneous motor tempo.
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1.1.2 The resonance theory explanation

The resonance theory of rhythm perception (Large & Jones, 1999; Large
& Kelso, 2002; van Noorden & Moelants, 1999) offers an alternative
explanation. According to resonance theory, experiencing the beat of
a piece of music or an isochronous sequence of sounds is an emergent
phenomenon, caused by neural oscillatory circuits that resonate with
incoming auditory events. An oscillatory circuit (henceforth oscillator)
with intrinsic period T entrains to sound events with a similar period.
More specifically, sound events with period T cause the amplitude of
oscillators with similar periods to increase. The resulting oscillator
amplitude indicates the extent to which events of period T occurred in
the auditory stream.

Neural resonance is a common theme underlying resonance ac-
counts of rhythm perception. Within this framework though, models
differ in whether they model beat perception using a small number
of oscillators or a large network of oscillators. The resonance theory
explanation of SR assumes the latter, motivated by the observation that
the brain encodes information using populations of neurons (Averbeck,
Latham, & Pouget, 2006). By assuming multiple oscillators, the ac-
count allows for modeling meter perception involving the temporal
organization of beats on multiple time scales (Large & Kolen, 1994).

Models using multiple oscillators (e.g., Large, 2000, Scheirer, 1998)
differ in implementation, but the basic mechanism is the same. A
network of oscillators, where each oscillator has an intrinsic period, is
given an auditory input. The amplitude of an oscillator with period
T reflects the extent to which sound events with period T occurred in
the auditory stream. The sum of the amplitudes of all oscillators in the
network reflects periodicities in the auditory stream. Precisely what
periodicities the network is sensitive to depends on the distribution of
the intrinsic periods of the oscillators.

Following Large (2008), an explanation for SR using this multiple-
oscillator version of resonance theory is based on the notion that an
isochronous sequence of sounds with period T will, in addition to
entraining oscillators attuned to that period, entrain oscillators at sub-
harmonics of T (i.e., 2 · T, 3 · T, 4 · T, etc.). The summed output from a
network of oscillators will contain amplitude fluctuation at the subhar-
monic frequencies of the given sequence, even if the sequence itself has
no fluctuations in amplitude. See Figure 1, where the sound sequence
activates both the oscillator with matching period (Oscillator 1) and the
oscillator with a period that is twice as slow (Oscillator 2), resulting in
an SR with a grouping of two (“Network output”). In support of this ac-
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Figure 1: Schematic plot of subjective rhythmization in a resonance
theory framework.

count, Nozaradan et al. (2011) found that, when participants are asked
to listen to an isochronous sound sequence and subjectively impose
an accent on every second beat, the resulting electroencephalogram
reveals a sustained response at the period of the imposed accent.

Two other aspects of SR can be explained by a multiple oscillator
resonance model: (1) why the feeling of SR disappears when the tempo
is sufficiently slow and (2) why the size of the perceived groups, and
consequently the number of sound onsets between subjective accents,
is larger when the tempo is faster. Experiencing SR while listening to
a sequence with period T requires oscillators that have at least twice
the period of T, otherwise there would be no oscillators to mark every
second (third, fourth, fifth, etc.) sound of the sequence. The vanishing
point of SR then depends on the the slower limit of rhythm perception,
that is, the period where the oscillator density is sufficiently low so that
it is not possible to entrain reliably to a rhythm of that period. This
is illustrated in Figure 2 where T1 is the longest period to which the
model is able to entrain and T2 is the longest period at which SR is still
experienced. The size of the perceived groups grow as the period of the
sequence becomes shorter because there exist oscillators at higher order
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Figure 2: Schematic plot of the oscillator density as a function of the
period.

subharmonics relative to the period of the sequence. As Figure 2 shows,
T3 marks the period for which T1 is the third subharmonic of T3, that
is, T3 marks the period for which one finds slow enough oscillators to
put an accent on every third beat, resulting in an SR with a grouping
of three. Further, T4 and T8 mark the periods for which T1 is the fourth
and eight subharmonic, respectively.

1.1.3 Predictions arising from the two explanations of subjective
rhythmization

The two alternative explanations above make a number of predictions
regarding participants’ behavior in an SR task as well as relations be-
tween that behavior and behavior in other tasks measuring aspects of
rhythm perception and production.

The first prediction regards the average group period in the SR task.
Remember that the preferred tempo explanation predicts a subject’s
average group period to be close to her preferred tempo. According to
the resonance theory explanation, on the other hand, the group period
depends on the slower limit of rhythm perception (T1 in Figure 2), and
should fall somewhere between the slower limit of SR (T2) and T1. These
two predictions are clearly distinct: preferred tempi, measured using
an SMT task, tend to center on a period of 500 ms, while a slower limit
of rhythm perception is believed to be above 1500 ms (Repp, 2006).
This slower limit can be estimated by way of the slow motor tempo task
in which a participant is asked to tap as slowly as possible while still
maintaining a continuous, regular rhythm (McAuley et al., 2006).

The resonance theory explanation makes a second prediction, re-
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garding the functional relation between the period of the stimulus
sequence and the experienced group size in the SR task. As Figure 2
shows, the maximum possible group size g for a sequence with period
T depends on the slower limit of rhythm perception T1, so that g ∼ T1

T .
This can be written more generally as the power function g ∼ k

Ta , where
k equals T1 in the case where the constant exponent a equals 1. Plot-
ted on log-log axes, power laws plot as a straight line with a slope
determined by the exponent: log(g) ∼ log(k)− a · log(T).

The resonance theory explanation makes a third prediction regard-
ing the relation between the SR task and sensorimotor synchronization
performance at slow tempi. Within the resonance theory framework,
both rhythm perception and rhythm production rely on the same mech-
anism: the entrainment of neural oscillatory circuits to regularities in
the sequence of sounds. Both the slow limit of rhythm perception and
rhythm production performance at slow tempi depend on the period
at which there cease to be sufficient oscillators to entrain reliably to a
sound sequence with corresponding period. The expectation is that
participants with a relatively fast slower limit of rhythm perception
should struggle to synchronize to a rhythmic stimulus at a slow tempi.
As noted, the group period in an SR task is expected to be close to a
participant’s slower limit of rhythm perception; therefore, the mean
group period can be seen as a proxy variable for that participant’s slower
limit. One can obtain a measure of synchronization performance at slow
tempi by measuring variability in a finger tapping task, where partici-
pants are asked to tap in synchrony with isochronous sequences (Repp,
2005). By giving participants both sequences that are comfortably paced
and ones that are in the area of the slower limit of rhythm perception,
one can factor out variability due to slow tempo from variability due to
motor response.

Together, these predictions motivate the inclusion of three auxiliary
tasks when extending the SR task introduced by Bolton’s (1894): an
SMT task, a slow motor tempo task and a taping task using slow pacing
sequences.

2 Method

2.1 Participants

Nine female and 21 male participants, ranging in age from 19 to 78
years (M=31.6, SD=12.8), were recruited from the Lund community.
All were unpaid volunteers. All reported being right handed. Twenty-
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six reported experience playing a musical instrument, of which ten
reported playing or practicing regularly for more than ten years.

2.2 Stimuli and Apparatus

The stimuli for the SR task were isochronous sequences of click sounds
created with a click-track generator included in the sound editor Audac-
ity1. Each click consisted of a 440 Hz sine wave of 10 ms. Each sequence
consisted of 15 seconds of clicks repeated at a constant ISI. Sequences
were presented at eight tempi, corresponding to click ISIs of 150, 200,
300, 600, 900, 1200, 1500, and 2000 ms. The sequence with an ISI of 2000
ms is slower than the proposed slower limit of SR (Fraisse, 1982); partic-
ipants were expected to report no SR while listening to it. Its inclusion
was for detecting any subjects who misinterpreted instructions.

For the SMT task, slow motor tempo task and the tapping task,
participants used a custom-built tapping board consisting of a piezo-
electric sensor mounted on a 5 cm2 piece of corrugated fiberboard (see
Bååth, 2011, for details). Participants tapped on the pad using their
right index finger, with their hand resting on a plastic foam cushion.
For the tapping task, the stimuli consisted of isochronous sequences of
440 Hz square wave tones of 20 ms. Each sequence consisted of 31 tones.
Sequences were presented at five tempi, corresponding to tone ISIs of
600, 1200, 1800, 2400 and 3000 ms. An Arduino microcontroller con-
trolled both generation of sounds and registration of taps. All stimuli
were delivered through full-sized head phones (Philips SHP2500).

2.3 Procedure

Participants were tested individually in a quite room. The experimental
tasks comprised an SR task, a tapping task, an SMT task and a slow
motor tempo task, all performed during a single session which, on
average, lasted one hour. The order of the SR task and the tapping task
was randomized so that the SR task preceded the tapping task for 15 of
the 30 participants. The SMT and the slow motor tempo tasks consisted
of three trials each. The SMT trials were interleaved between the SR
and the tapping task while the slow motor tempo trials were presented
last. See Figure 3 for a flowchart of the experimental procedure.

1http://audacity.sourceforge.net/

8



Subjective
rhythmization

task

Tapping
task

SMT trial

SMT trial

Slow motor
tempo trial x 3

SMT trial

Subjective
rhythmization

task

SMT trial

SMT trial

Slow motor
tempo trial x 3

SMT trial

Tapping
task

Randomization

Figure 3: Flowchart of the experimental procedure.

2.3.1 The subjective rhythmization task

Each participant was placed in front of a computer with head phones.
Prior to the task a 600ms ISI click sequence was played and the partici-
pants were informed that all clicks in the sequence were equally loud
and equally spaced. Each participant was asked if she nevertheless ex-
perienced a grouping of the clicks or if some clicks were more dominant.
The possible groupings of the sequence were explained, from none up
to a grouping of eight. The 600 ms ISI click sequence was replayed.
At this point, all participants reported experiencing a grouping of the
clicks. These instructions conform to those described by Andrews (1905)
in his discussion of Bolton’s work as a Test of Involuntary Rhythmisation
with Suggestion.

Participants then began the task proper, which consisted of four
blocks of eight trials each: one for each click-sequence ISI level. The
order of the trials within each block was randomized. Each participant
was asked to attend to each sequence and report the first grouping that
she experienced. This was done using a computer interface by selecting
the appropriate alternative from a drop-down list with the alternative
“No grouping/groups of one” and alternatives “Groups of two” up to
“Groups of eight” (translated from Swedish) 2. The task was self paced
and no participant was interrupted while engaged in the task.

2A public version is available at http://sumsar.net/files/sr_task/public_sr_task.html.
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2.3.2 The tapping task

Each participant sat, wearing head phones, in front of the tapping board
and was asked to adjust the volume to a comfortable level while a tone
sequence was played. The tapping task consisted of four blocks of five
trials each, one for each ISI level. The order of the trials within each
block was randomized. A trial consisted of each participant tapping
along with a tone sequence, using her dominant hand. Participants
were instructed to tap along to each tone sequence, to start tapping as
soon as the sequence began, and to stop tapping when the sequence
stopped. Participants were requested not to subdivide the beat in any
way, for example, by covert counting or by moving the body.

2.3.3 The spontaneous motor tempo task

The setup was similar to the tapping task. Prior to each trial, partic-
ipants were instructed to tap a regular rhythm at a tempo that felt
comfortable and natural, and that felt neither too fast nor too slow.
Participants were told to start tapping when ready and to continue until
given notice. Thirty-one taps were recorded before participants were
asked to stop.

2.3.4 The slow motor tempo task

The setup was similar to the SMT task, the only difference being that
participants were asked to tap at their slowest possible rate while still
able to maintain a regular beat. Again, Participants were asked to
refrain from subdividing taps in any way, either overtly or covertly.
These instructions conform to those described by McAuley et al. (2006).
For each participant, the first fifteen taps were recorded.

2.4 Analysis

Of primary interest to the present study is participants’ SR experience
of monotonic tone sequences. That is, the perceptual experience is
of interest, while differences in how participants approach the task
are seen as a confounding variable. The slower limit of SR has been
estimated to lie between an ISI of 1500 and 1800 ms (Fraisse, 1982). Any
participant who repeatedly reports experiencing a grouping at an ISI
well above this limit is assumed to have misinterpreted instructions.
This study included four trials, with an ISI of 2000 ms added to detect
such participants. Five of the thirty participants reported experiencing
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a grouping on all four trials at the 2000 ms ISI level. These participants
were removed from further data analysis.

For each participant, the mean group period was estimated using
only those trials for which a perceived grouping was reported, using
the formula:

∑n
i=1 Ti · gi

n

. . . where n is the number of trials for which the participant reported
experiencing a grouping, gi is the reported group size for the ith trial,
and Ti is the corresponding ISI. As an example, consider a participant
who reports hearing a grouping of four at an ISI of 300 ms, a grouping
of two at an ISI of 600 ms, and a grouping of two at an ISI of 900 ms. The
mean group period would then be (4 × 300 + 2 × 600 + 2 × 900)/3 =
1400 ms.

For the tapping task, the first four taps in every trial were discarded
in order to use only those taps where the participants had had some
time to synchronize to the sequence. For each trial, tapping variabil-
ity was calculated as the standard deviation (SD) of the tone-to-tap
asynchronies. The increase in timing variability due to slowing of the
tempo was estimated by fitting an ordinary least squares regression
to the SD of the asynchronies as a function of ISI. The slope of such a
regression line measures how much worse a participant performs as a
result of slowing the tempo; a participant with a small variability slope is
comparably better at coping with a slow tempo than a participant with
a large slope.

Figure 4 shows an example of these measures. Specifically, it shows
two participants’ reported groupings from the SR task and timing vari-
ability from the tapping task. Participant B reported experiencing larger
groupings and was better at synchronizing to a slower tempo than
participant A, as reflected in the measures of mean group period and
variability slope: participant B has a smaller slope and a larger mean
group period.

For each participant, the mean spontaneous motor tempo and slow
motor tempo were estimated by first calculating the mean intertap
interval for each trial, then taking the mean of the three trials for each
task. Statistical analysis was performed using the statistical computing
environment R (R Core Team, 2012).
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Grouping % of Trials Peak ISI
1 23.9 2000 ms
2 29.5 600 ms
3 3.5 300 ms
4 29.6 200 ms
5 0.8 150 ms
6 2.2 200 ms
7 0.1 150 ms
8 10.4 150 ms

Table 1: Summary of reported groupings in the SR task.

3 Results

All participants reported hearing groupings when listening to the mono-
tone isochronous sound sequences, despite being told explicitly that
the sound sequences were monotone. The most commonly reported
groupings were two, four and eight; three and six were less common;
five and seven were rarely reported. Table 1 shows the percentage of re-
sponses for each group size and the ISI where that group size was most
commonly perceived. A group size of one indicates that the participants
reported no grouping.

The percentage of reported groupings as a function of ISI is shown
in Figure 5. Reported group size increases as ISI decreases, both at
the group and individual level, i.e., ISI level correlated negatively to
reported group size for all participants (Spearman’s rank correlation
with correction for tied values, mean rρ= -.77, SD = 0.15, p < 0.05 for
all participants). For no ISIs did all participants cease to experience a
grouping, however, more than half the trials above an ISI of 1500 ms
did not result in any experienced groupings.

As a measure of consistency, the probability of reporting the same
group size in two different trials with the same ISI was estimated for
each participant. Using this measure, participant A in Figure 4 had a
consistency of .73, participant B a consistency of .91, and the overall
mean consistency was .69 (SD = 0.13). Figure 6 shows the mean con-
sistency across participants at different ISIs. The ISI with the highest
consistency was 2000 ms (M=.75); the ISI with the lowest consistency
was 1200 ms (M = .65). Participants were comparably consistent at
different ISIs; the standard deviation of the mean consistency across
ISIs was 0.034. To put this into perspective, these consistency measures
can be compared to those resulting from randomly reporting groupings,
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Figure 5: Percentage of reported groupings as a function of ISI.

according to the group probabilities presented in Table 1. Using this
scheme, the consistency is 0.24 (marked by the dashed line in Figure 4),
a much lower consistency than any of those calculated using the data.

The mean of the logarithm of reported group sizes was calculated
for each participant and ISI level, as shown in Figure 7, where the grand
mean is plotted against log2(ISI). The relationship between reported
group size and ISI appears linear, in line with the hypothesis that this
relationship would follow a power law. A linear regression between
log2(ISI) and the mean of the logarithm of the reported group sizes for
each participant yields the power law relation g = k

Ta , where estimates
of both the factor and exponent are significantly different from zero (k
= 76.7, t = 25.1, p < .001; a = 0.53, t = 19.9, p < .001 ; R2 = 0.67, df = 198).

The grand mean of the mean group period was 1881 ms (SD =
656 ms), the grand mean spontaneous motor tempo was 622 ms (SD
= 157 ms), and the grand mean slow motor tempo was 2757 ms (SD
= 1100 ms). Figure 8 show the distributions of these three measures.
The resonance theory explanation of SR predicted that the mean group
period should fall between the slower limit of SR and the slower limit
of rhythm perception. The data shown in Figure 8 are in accord with
this prediction given that the slower limit of SR is estimated as the ISI
where more that half of the trials result in no grouping (ISI 1500 ms)
and the slower limit of rhythm perception is estimated by the average
slow motor tempo (2757 ms).
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Figure 9 shows the relation between a subject’s mean group period
and variability slope. There was a negative correlation between mean
group period and variability slope across participants (Spearman’s
rank correlation, rρ = -.56, p = .0044, n = 25). From a resonance theory
perspective, this implies a tendency for participants with a fast slower
limit of rhythm perception to have relatively larger timing errors when
tapping at slow tempi. There was no significant correlation between
years practicing a musical instrument and either mean group period
(Spearman’s rank correlation with correction for tied values, rρ= -.34, p
= .093, n = 25) or timing error slope (rρ= -.023, p = .91, n = 25).

4 Discussion

Subjective rhythmization (SR) is the phenomenon whereby the sounds
of a monotone metronome sequence are experienced as having different
intensity, with the experienced intensity differences following a regular
pattern. The present study aimed to replicate and extend the two
studies employing the original SR experimental paradigm (Bolton, 1894;
Vos, 1973). The extensions were the use of a wider tempo range, the
inclusion of multiple trials per tempo level, and the administration of
supplemental rhythm production tasks, motivated by two theoretical
explanations of SR: the preferred tempo (Temperley, 1963) and the
resonance theory (Large, 2008) explanations.

The results confirmed four findings of the earlier studies. First,
most participants do report that they experience SR. In the current
study all participants reported experiencing SR. While this could be
due to the musical training of many of the participants, it supports
the position of SR as a robust phenomenon that a large part of the
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population experiences.
Second, the experience of SR is strongly affected by the tempo of

the sound sequence, as shown by a strong negative correlation between
sound sequence ISI and reported group size. Participants were highly
consistent with regard to the group sizes reported at particular ISIs; the
probability of reporting the same group size on any two trials with the
same ISI averaged .69. Putting this into perspective, the probability
of choosing the same response on two different trials would be 0.24
if choosing randomly according to the group probabilities in Table
1. Participants were also comparably consistent across ISIs, that is,
although the impression of SR is strongly affected by tempo, consistency
of responses is not.

Third, all group sizes are not reported with equal frequency. Groups
of two, four, and eight were reported most often, followed by groups of
three and six. Groups of five and seven were reported on less than 1% of
the trials. This is the ordering one would expect from a Western music-
theoretical perspective (van Noorden & Moelants, 1999). To date, no
SR study has been conducted in a country with a non-Western musical
tradition. It remains to be determined to what degree SR is affected by
cultural factors. As culture has been shown to play an important role
in rhythm perception (Hannon, Soley, & Ullal, 2012), a prediction is
that groups of five and seven would be more commonly reported by
participants accustomed to odd meters prevalent in, e.g., the traditional
music of the Balkan Peninsula.

Fourth, when the tempo of the sequences is sufficiently slow, partic-
ipants do not experience SR. This slower limit of SR, while not probed
by Vos, was estimated to an ISI of 1500 ms by Bolton. The current study
found no such sharp limit but instead found large inter-individual vari-
ability. However, at an ISI of 1500 ms more than half the trials resulted
in no experienced SR, comparable to Bolton’s figure.

The current study focused on how the experience of SR varies as a
function of tempo but many other factors might also be influential. Time
perception differs depending on the pitch of the stimulus (Hove, Marie,
Bruce, & Trainor, 2014), so it is possible that pitch affects the experience
of SR. Another factor that is likely to influence SR is the task instructions,
even though the comparability of the results from the current study
with the previous studies by Bolton (1894) and Vos (1973) shows that
SR is at least somewhat robust to variation in the task instructions.
That said, differences in how subjects approach the task might still
heavily influence the experience of SR. The study by Nozaradan et al.
(2011) is already an example of this, as whether participants were asked
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to actively imagine a subjective duple meter or not influenced their
subsequent EEG readings. It remains an open question to what degree,
and in what way, the experience of SR depends on the task instructions
and on qualities of the stimulus such as amplitude, pitch and timbre.

As an aside, my experience is that perceived groupings can be
changed somewhat at will, for example, listening to a monotone se-
quence with an ISI of 600 ms I often start out hearing an accent on every
second sound. By focusing, however, I can switch the accent to every
fourth sound. If SR can generally be affected by such top-down control
it would not imply that SR is a purely top-down phenomena. Rather,
such a finding would resonate with research regarding visual illusions,
such as the Necker cube, known to be affected by both bottom-up and
top-down processes (Long & Toppino, 2004).

4.1 Explanations of Subjective Rhythmization

The literature offers two explanations for SR: the preferred tempo (Tem-
perley, 1963) and the resonance theory (Large, 2008). Resonance theory
is a dynamical systems framework for modeling rhythm perception
and production. The resonance theory explanation of SR is based on the
notion that an isochronous sequence, in addition to entraining oscilla-
tory units responsive to the fundamental period, entrains subharmonic
oscillators, thus producing the subjective accents characteristic of SR
(Large, 2008). This explanation of SR gives rise to three predictions: (1)
the mean group period of the reported groupings should fall between
the slower limit of SR and the slower limit of rhythm production, (2)
the relation between the size of the reported grouping and ISI of the
sound sequence should follow a power relation, and (3) a participant’s
mean group period should relate to tapping performance at slow tempi.
Within the resonance theory framework, (1) follows from assuming
a slower limit of rhythm perception, with the mean group period be-
ing seen as a proxy variable for this limit; (2) follows from a slower
limit of rhythm perception limiting the highest possible grouping that
can be perceived for any given ISI; (3) follows from the assumption
that rhythm perception and rhythm production both share the same
underlying mechanism.

The results of the present study are in line with the predictions de-
veloped on the basis of resonance theory. The results do not support the
preferred tempo explanation, whereby the mean group period should
be close to participants’ spontaneous motor tempo. Instead, the mean
group period was closer to the participants’ slow motor tempo (see
Figure 8), in line with prediction (1).
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Resonance theory assumes that rhythm perception and rhythm
production share a common neural substrate. Thus, there should be
a relation between a participant’s performance in rhythm perception
tasks and rhythm production tasks. The present study did indeed find
such a relation as there was a correlation between what a participant
reported in the SR task and her timing performance in the tapping
task. Specifically, participants that reported large groupings in the SR
task tended to have smaller timing variability when tapping at a slow
tempo relative to tapping at a moderate tempo. From a resonance
theory perspective this is explained by that the slower limit of rhythm
perception influences both timing variability at a slow tempo and what
grouping is perceived in an SR task.

The relation between the reported group sizes and the ISI of the
sound sequences was found to follow a power relation closely (see
Figure 7). Resonance theory explains this by that of the group size
perceived at a certain ISI depends on the participant’s slower limit
of rhythm perception. That slower limit governs the ISI at which the
participant starts to experience a given group size. The relation between
group size and ISI was well captured by the expression g ∼ k

Ta , where
g is the perceived grouping, T is the ISI of the sequence, and k and a
are constants. The results are not compatible with a sharp slower limit
of rhythm perception. A sharp limit would imply that a participant
should experience a grouping of two at half the ISI of the slower limit,
a grouping of four at a fourth of the slower limit, etc. Such behavior
would result in a = 1, with k equal to the slower limit. The estimate
of the current study was a = 0.53 implying that participants tend to
report smaller group sizes at faster tempi compared to what a sharp
limit predicts. This can be accommodated within a resonance theory
framework by treating rhythm perception as an ability that, instead of
having a sharp limit, deteriorates gradually as the tempo gets slower.

Overall, the current results are well explained by the resonance
theory of rhythm perception. This is not to say that other models could
not explain the phenomena of SR. However, the current results do
suggest that any such account would need to include both a slow limit of
rhythm perception and a close connection between rhythm perception
and rhythm production. Subjective rhythmization is closely related to
meter perception; the ability of subjects to experience widely different
accent patterns while listening to the same sequences draws attention
to the difference between a rhythm sequence as stimulus and as percept.
Of course, it is not uncommon that different people experience the same
piece of music differently. What is perhaps surprising is that, even while
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listening to the most simple monotone metronome sequence, what is
experienced is still in the ear and mind of the listener.
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Abstract The sensorimotor synchronization paradigm is
used when studying the coordination of rhythmic motor re-
sponses with a pacing stimulus and is an important paradigm
in the study of human timing and time perception. Two mea-
sures of performance frequently calculated using sensorimotor
synchronization data are the average offset and variability of
the stimulus-to-response asynchronies—the offsets between
the stimuli and the motor responses. Here it is shown that
assuming that asynchronies are normally distributed when es-
timating these measures can result in considerable underesti-
mation of both the average offset and variability. This is due to
a tendency for the distribution of the asynchronies to be bi-
modal and left skewed when the interstimulus interval is lon-
ger than 2 s. It is argued that (1) this asymmetry is the result of
the distribution of the asynchronies being a mixture of two
types of responses—predictive and reactive—and (2) themain
interest in a sensorimotor synchronization study is the predic-
tive responses. A Bayesian hierarchical modeling approach is
proposed in which sensorimotor synchronization data are
modeled as coming from a right-censored normal distribution
that effectively separates the predictive responses from the
reactive responses. Evaluation using both simulated data and
experimental data from a study by Repp and Doggett (2007)
showed that the proposed approach produces more precise

estimates of the average offset and variability, with consider-
ably less underestimation.

Keywords Bayesian statistics . Sensorimotor
synchronization . Hierarchical models . Finger tapping

The experimental study of human timing and time perception
has a long history in psychology, with the sensorimotor syn-
chronization (SMS) task being one of the most important ex-
perimental paradigms (Roeckelein, 2008). Following Stevens
(1886), this task requires a participant to produce periodic
movements synchronized to a regular pacing stimulus such
as a metronome (Schulze, 1992). Sensorimotor synchroniza-
tion is often studied in a musical context, because the ability to
engage in SMS is central to musical activities, especially in
ensemble music, in which many musicians are required to
follow the same rhythm and coordinate their movements to-
gether (Repp, 2006). Yet, SMS performance is also a relevant
measure in many other fields. For example, SMS performance
has been shown to correlate with personality traits (Forsman,
Madison, & Ullén, 2009) and measures of intelligence for
both children (Corriveau & Goswami, 2009) and adults
(Madison et al., 2009). It is also correlated with performance
in other experimental paradigms related to timing, such as
simple reaction time (Holm, Ullén, & Madison, 2011) and
eye blink conditioning (Green, Ivry, & Woodruff-Pak, 1999).

What is most often measured in an SMS task is the
stimulus-to-response asynchronies—that is, the offset of a par-
ticipant’s responses from the stimulus onsets, where a nega-
tive asynchrony indicates that a participant’s response preced-
ed the stimulus (Repp, 2005). The two basic parameters esti-
mated in an SMS task are the constant error—the average
deviation from the target stimuli—and the timing variability
of the asynchronies. The most straightforward and common
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way to estimate these parameters is to calculate the sample
mean and the sample standard deviation (SD) of the asyn-
chronies. However, it is shown here that this approach results
in negatively biased estimates of constant error and timing
variability; that is, these parameters are generally
underestimated by the sample mean and sample SD. The con-
cern is with the nonnormal distribution of timing asynchronies
at slow tempi and the failure of moment estimators to incor-
porate task-relevant information.

The present article describes a Bayesian model with which
to estimate the constant error and timing variability in SMS
tasks that do not suffer from the problems associated with
using the sample mean and SD. The text is organized as fol-
lows. First the distribution of SMS data is reviewed, and it is
shown that the distribution is approximately normal when the
tempo of the pacing stimuli is moderate, but that the distribu-
tion becomes increasingly nonnormal when the interstimulus
interval (ISI) exceeds 2 s. It is argued that this is due to a
tendency for participants to react to the stimulus onset and
that, because of this, SMS data are modeled better using a
right-censored normal distribution. A Bayesian model is then
developed that uses a censored normal distribution to
model the distribution of timing asynchronies. The mod-
el is developed in two stages, first as a basic nonhier-
archical model, and then as a fully hierarchical model.
Finally, the model is compared with the traditional
methods of using the sample mean and SD to estimate
constant error and timing variability. This is done using
both simulated data and the experimental data from a
study by Repp and Doggett (2007). It is shown that
using a censored normal distribution to model timing
asynchronies results in considerably less bias than using
traditional methods. Furthermore, using a hierarchical
Bayesian approach outperforms both traditional methods
and a nonhierarchical Bayesian model with regard to
accuracy. This article advances the study of human
timing and time perception by giving researchers a better tool
to measure SMS performance. A further advance is that the
Bayesian methods proposed facilitate analyzing SMS data
when the ISI exceeds 2 s.

The distribution of sensorimotor synchronization
data

In a typical SMS task, a participant is asked to produce re-
sponses in time with a recurring, isochronous (equally spaced
in time) stimulus sequence. The commonly employed stimuli
are sequences of equally spaced auditory tones that the partic-
ipant synchronizes to by tapping a button using the index
finger, although there are many variations of this basic exper-
imental procedure (Repp, 2005). Stimulus-to-response asyn-
chronies, that is, the time offsets between the stimulus onset
and the participant’s timed response, are of primary interest in
SMS tasks (Repp & Su, 2013). Such asynchronies can be
positive or negative, where a negative asynchrony indicates
that the corresponding response preceded the stimulus, and a
positive asynchrony indicates that the corresponding response
followed the stimulus onset.

Under many circumstances the distribution of the asyn-
chronies is approximately normal (Chen, Ding, & Kelso,
1997; Mates, Müller, Radil, & Pöppel, 1994; Moore &
Chen, 2010), but it is rarely normal when the ISI of the pacing
stimuli is longer than 2 s (cf. Mates et al., 1994, and Miyake,
Onishi, & Pöppel, 2004). An example of timing asynchrony
distributions at different ISIs is shown in Fig. 1 using data
from a study by Bååth and Madison (2012), in which 30
participants were asked to tap with their index finger in syn-
chrony with a pacing tone sequence. In Fig. 1A, the asynchro-
ny distributions for a representative participant are shown; for
ISIs of 600 ms and 1,200 ms, the distributions can be seen to
be heap shaped and symmetric. The central tendencies of the
distributions are not centered around zero (i.e., at the onset of
the pacing tone) but are slightly negative, a well-known phe-
nomenon termed the mean negat ive asynchrony
(Aschersleben, 2002). At ISIs of 1,800 ms and above, a visible
peak from 100 to 200 ms makes the distribution left skewed,
or even bimodal. This peak coincides with where auditory
reaction time responses to the stimulus onset would be likely
to occur (Gottsdanker, 1982). These deviations from normal-
ity not only can be seen by visual inspection, but a Shapiro–
Wilk normality test is also rejected, with p < .01 as the

Fig. 1 Tone-to-response asynchrony distributions (A) for a single participant and (B) for all participants in Bååth and Madison (2012)
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rejection criterion, for ISIs of 1,800 ms (p = .004), 2,400 ms (p
< .001), and 3,000 ms (p < .001), but not for ISIs of 600 ms (p
= .62) and 1,200 ms (p = .90). This was even after using
Tukey’s (1977) boxplot method to label and remove outliers.
A similar pattern can be seen when looking at the distributions
of the asynchronies from all participants. The percentages of
the 30 participants who produced asynchronies at different ISI
levels that resulted in rejection by a Shapiro–Wilk test were
7% (600 ms), 3% (1,200 ms), 7% (1,800 ms), 27% (2,400
ms), and 47% (3,000 ms). This resonates with the finding of
Mates et al. (1994) that asynchronies produced at ISIs above
1,800 ms tend to be increasingly nonnormal.

According to Repp and Doggett (2007), the distribution of
timing asynchronies departs from normality at ISIs longer
than 2s because participants occasionally overshoot the target
stimuli and instead react to them. At moderately fast ISIs,
around 600 ms (see Fig. 1), this rarely happens, because the
asynchronies tend to be within 100 ms of the stimulus onset.
At longer ISIs the variability of the asynchronies increases,
and at an ISI of 2 s many asynchronies are smaller than –
300 ms but rarely exceed 300 ms. This asymmetry results in
a skewed, bimodal asynchrony distribution with a long left tail
and a short right tail at long ISIs.

If Repp and Doggett’s (2007) interpretation is correct, the
observed distribution of timing asynchronies at ISIs greater
than 2 s is then a mixture of predictive asynchronies, which
generally are the responses of interest, and contaminating re-
active asynchronies. The mean and SD of the whole asynchro-
ny distribution is then uninformative, and methods should be
used to separate out these distributions so as to estimate the
mean and SD of the predictive distribution adequately. If this
is not done, different phenomena are measured at long and
short ISIs: At short ISIs, a participant’s ability to synchronize
to a pacing sequence is being measured, whereas at longer
ISIs, a mixture of reaction time and timing ability may be
measured. The data from an SMS task can then be thought
of as being sampled from two different distributions. At short
ISIs, the predictive timing asynchronies can be seen as sam-
ples from a normally distributed random variableXP. At longer
ISIs, at which the timing variability is large enough that par-
ticipants sometimes make reactive responses, the timing asyn-
chronies can be seen as samples from a random variable XA =
min(XP, XR), where the random variable XR is distributed as a
reaction time distribution. There are many proposed models
for the distribution of reaction time responses, all of which are
right skewed and, for practical purposes, left bounded (Ulrich
& Miller, 1994; van Zandt, 2000). For the present purpose of
modeling the predictive responses, the distribution of the re-
active responses could be assumed to be any of those—for
example, the ex-Gaussian distribution.

An illustration of the distribution of XA is shown in Fig. 2.
The rationale for taking theminimum ofXP and XR is that these
two random variables can be thought of as representing two

independent processes that can either trigger a response (e.g.,
a buttonpress or drum stroke), with the response being initiat-
ed by whichever process triggers first. For example, if 300 ms
is an outcome of XP and 200 ms is an outcome of XR, then the
outcome of XA, which represents a participant’s response,
would be min(300 ms, 200 ms) = 200 ms. Because XA is the
minimum of XP and another random variable, XAwill always
have a shorter right tail than XP. Note that there are other
combinations of XP and XR that do not result in this behav-
ior—for example, the average of XP and XR, or a mixture
distribution constructed from XP and XR. The average of XP
and XR would instead result in a distribution with a positively
shifted mean, as compared to XP. This would not be in
agreement with the well-established finding that the
mean asynchrony from timing tasks tends to be slightly
negative (Aschersleben, 2002). The mixture distribution
defined by Xmix = wXP + (1 – w)XR would not resemble
XA in that, depending on the location of XR and the
mixture weightw, the distribution of Xmix could have a longer,
rather than a shorter, right tail than XP.

In an SMS task, the interest is in the distribution of XP, and
whereas XP is possible to measure at short ISIs, at long ISIs XP
can be considered a latent variable. Using the sample mean
and SD to estimate the distribution of XP is then problematic
because reactive responses may confound estimates of con-
stant error and timing variability, resulting in considerable
negative bias. This happens because the distribution of XA

has a shorter right tail than the distribution of XP. Due to the
asymmetry of XA, a sample mean estimate will be biased
toward a negativemean asynchrony, and a sample SD estimate
will be smaller than the actual SD of XP, due to the right tail of
the distribution of XA being less spread out than the distribu-
tion of XP. In other words, using moment estimators will make
it appear that participants are responding earlier and more
accurately than they actually are.

At first, it might seem that the distributions of XP and XR

could be separated using a standard mixture-model approach,
by modeling an outcome as being generated by first selecting
one of the underlying distributions and then using that distri-
bution to generate the outcome. This approach does not con-
sider that the distribution of XA was the result of taking the
minimum of two random variables, and so will not result in a
consistent estimator of the parameters underlying XA. Another

Fig. 2 Theoretical distribution of timing asynchronies (XA, solid line),
modeled as a combination of a distribution of predictive responses (XP,
dashed lines) and reactive responses (XR, dotted line)
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approach would be to implement the fully generative model
shown in Fig. 2. This would, however, require specifying not
only the distribution for XP, but also that for XR. Although
many possible distributions could be assumed for reactive
responses (van Zandt, 2000), it is not known whether these
are applicable for the reactive responses in an SMS task, and
misspecification of this distribution would impact the param-
eter estimates of both XP and XR.

One way of estimating the distribution of XP is by noticing
that the distribution of XR does not depend on the ISI and is
left-bounded by participants’ ability to react to the pacing
tones. Therefore, the distribution of XP can be retrieved by
modeling the asynchronies as coming from a right-censored
normal distribution (see Fig. 3) with the censoring threshold
being selected to exclude reactive taps—for example, set to
100 ms. That is, all asynchronies below 100 ms would be
assumed to be direct observations of XP, whereas asynchronies
above 100mswould also be assumed to be observations ofXP,
but the actual asynchrony would be disregarded and the only
information retained would be that the observation fell in the
range (100, ∞) ms. The rest of this article will focus on a
model implementing these assumptions and Bayesian estima-
tion of the parameters of this model.

Bayesian modeling of sensorimotor synchronization
data

Bayesian methods of data analysis are becoming increasingly
popular in psychology and other fields (Andrews & Baguley,
2013; Kruschke, 2011b). The rationale for using Bayesian
modeling is the ease with which nonnormal data can be
modeled, hierarchical dependencies in the data can be speci-
fied, and prior knowledge, such as task-specific constraints,
can be included (Kruschke, 2011a). The model described here
is Bayesian and is implemented using Markov chain Monte
Carlo (MCMC) methods. Both the terminology and the phi-
losophy of Bayesian statistics are different from those of clas-
sical frequentist statistics. The following sections assume
some acquaintance with Bayesian statistics and MCMC
methods, and many good text cover these topics—for exam-
ple, the books by Kruschke (2011a), Lunn, Jackson, Best,
Thomas, and Spiegelhal ter (2012), and Lee and

Wagenmakers (2014). Because the data from an SMS exper-
iment often are hierarchically organized—that is, they consist
of many participants performing multiple trials—the model is
presented in a hierarchical as well as in a nonhierarchical
version. The advantages of hierarchical modeling are de-
scribed well by Gelman and Hill (2006).

A number of Bayesian models are designed to analyze
reaction time data (Craigmile, Peruggia, & van Zandt, 2010;
Farrell & Ludwig, 2008; Rouder, Sun, Speckman, Lu, &
Zhou, 2003), and these models and the model presented in
this article have much in common, in that they are hierarchi-
cal, deal with timing data, and model data as coming from
nonnormal distributions. Differences include the types of dis-
tributions used and what type of task-related information is
incorporated in the model. The present model makes two im-
portant assumptions. First, the asynchronies are treated as in-
dependent observations. This is strictly not true, because asyn-
chronies tend to be autocorrelated when they are considered as
forming a time series (Chen et al., 1997). Estimates of constant
error and timing variability do not, then, constitute an exhaus-
tive description of the underlying data. Still, these measures
are two of the most common in the literature (Mates et al.,
1994), and together they form a useful summary of timing
performance. Second, the asynchronies are assumed to be
from trials with the same ISI. In an experimental setup in
which many ISI levels are used, the constant error and timing
variability have to be estimated separately for each ISI level.

Below, the nonhierarchical version of the model is first
described, which is then extended into a fully hierarchical
model. The model uses priors that are vague and
noninformative, except with regard to certain task-specific
constraints that are used to inform the priors. How to extend
the model in order to use more informative priors and how to
model interresponse intervals instead of asynchronies is de-
scribed in the supplementary text, and software implementing
the model is freely available at https://github.com/rasmusab/
bayes_timing. The software is implemented using the R
statistical environment (R Development Core Team, 2012)
and the JAGS framework (Plummer, 2003). The JAGS frame-
work takes a model definition and automatically generates a
sampling scheme using Gibbs sampling. Because the techni-
cal details regarding sampling schemes are handled by JAGS,
it is relatively straightforward to extend and modify the
models given below—for example, by changing the priors
or the distributional assumptions.

The nonhierarchical model

The timing asynchronies (Y) are modeled as coming from a
normal distribution in which asynchronies exceeding a thresh-
old c are assumed to be right censored. Strictly, it is the values
that are censored, and not the actual distribution, but the pro-
cedure of first censoring values above a threshold and then

Fig. 3 Schematic diagram of the fit of a right-censored normal distribu-
tion to the theoretical distribution of timing asynchronies shown in Fig. 2
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modeling them as being normally distributed could be seen as
defining a right-censored normal distribution with three pa-
rameters: μ, σ, and c. In the present model, the threshold c is
fixed at a value that is assumed to censor asynchronies that
could be the results of reactive responses. A conservative val-
ue for c would be, for example, 100 ms, which is a reasonable
tradeoff between censoring reactive responses and maintain-
ing predictive responses.

The prior distributions for both μ and σ use noninformative
Jeffreys (1946) priors, but with additional constraints imposed
by the SMS task. In an SMS task, a single asynchrony cannot
be farther away from a stimulus onset time than half the ISI.
For example, if the ISI is 600 ms and a response is registered
250 ms before a stimulus onset, this will be encoded as a –
250-ms asynchrony, but if that response was registered 375ms
before the same stimulus onset, it would instead be encoded as
a 225-ms asynchrony with respect to the preceding stimulus
onset. If asynchronies are bounded by the interval [–ISI/2, ISI/
2] ms, then μ is also bounded by this interval. The Jeffreys
prior on μ is an unbounded uniform distribution (Lunn et al.,
2012), but when using the task-specific information, the prior
becomes a uniform distribution bounded on the interval [–ISI/
2, ISI/2] ms. Given that the difference between any two asyn-
chronies can be at most the length of the ISI, σ can be at most
ISI/2 ms.1 The Jeffreys prior on σ is an unbounded uniform
distribution on log(σ) (Lunn et al., 2012), but using the present
task-specific constraints bounds the distribution on the inter-
val [log(1), log(ISI/2)] ms. The lower bound on log(σ) is set to
log(1) because the probability that the SD of a participant’s
asynchronies would be close to 1 ms is negligible. The full
specification of the nonhierarchical model is then:

Yi ~ Right-Censored-Normal(μ, σ, c),
μ ~ Uniform(–ISI/2, ISI/2),
log(σ) ~ Uniform[log(1), log(ISI/2)],

where Yi is the ith asynchrony.
Point estimates of the parameters μ and σ can be calculated

by taking the mean or the median of their respective posterior
distributions (Robert, 2007). These estimates can then be used
as a Bdrop-in^ replacement for the sample mean and SD esti-
mates of constant error and timing variability. This approach is
useful in the case in which a researcher wants to avoid the bias
associated with using the sample mean and SD but prefers a
classical analysis of the point estimates rather than a fully
Bayesian analysis.

It should be noted that a point estimate generated using the
Bayesian model above and a maximum likelihood approach
would be very similar. This is because the maximum a
posteriori estimate from a Bayesian model with flat priors

and a maximum likelihood estimate are identical (Hastie,
Tibshirani, & Friedman, 2009). When only a point estimate
is required, it can therefore be convenient to use a maximum
likelihood method, which is computationally more efficient
and, perhaps, a better-known method than Bayesian estima-
tion. Ulrich and Miller (1994) have described a maximum
likelihood approach for fitting a right-truncated normal distri-
bution that is applicable in this case. This method has also
been implemented and is available at https://github.com/
rasmusab/bayes_timing.

The hierarchical model

Hierarchical modeling is an elegant solution to the problem of
analyzing a data set with repeated measurements (Kruschke,
2011a). It is an increasingly used technique in psychological
research and is variously known as hierarchical modeling,
multilevel modeling, or mixed modeling (Baayen, Davidson,
& Bates, 2008). One of the reasons to use a hierarchical model
is to better describe data that have a multilevel structure
(Gelman & Hill, 2006), and the typical SMS experiment is
inherently multileveled. Timing responses can be assumed to
be related within a trial, between trials, within a participant,
and between participants. Furthermore, it is reasonable to as-
sume that relations exist between the timing responses at dif-
ferent tempi; for example, a participant who produces highly
variable asynchronies at an ISI of 500 ms will probably pro-
duce highly variable asynchronies at longer ISIs. The hierar-
chical model described below does not take all of the possible
multilevel relations into account. Asynchronies from different
trials produced by the same participant are assumed to have
the same distribution; that is, no training or exhaustion effect
is assumed to exist. Although it is well known that timing
variability increases as the tempo gets slower, this relation
does not seem to be linear (Grondin, 2012; Repp & Su,
2013), and it is not known whether it follows any simple
function. Therefore, the relationship between the asynchronies
produced at different tempi is not part of the model.

What this model adds over the nonhierarchical version is
that the relation between participants’ timing performance is
modeled, allowing measurements made on all participants to
inform the parameter estimates of single participants. The hi-
erarchical formulation also facilitates investigating individual
differences as constant error and timing variability are estimat-
ed at both the individual and group levels. The mean of the
censored normal distribution of the jth participant, μj, is
modeled as coming from a normal distribution with mean μμ
and SD σμ. The subscript μ is used to indicate that μμ and σμ
are hyperparameters of the prior distribution on μj. The SD of
the censored normal distribution, σj, is modeled as coming
from a log-normal distribution with the parameters μσ and
σσ (as was proposed by Lunn et al., 2012). Note that these
parameters are not the mean and SD of the log-normal

1 This maximum SD would occur in the unlikely event that half of the
asynchronies were –ISI/2 ms and half were ISI/2 ms.
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distribution. Through reparameterization, this distribution can
be described by its mean, mσ, and SD, sσ (Limpert, Stahel, &
Abbt, 2001). The rationale for using the log-normal distribution
is that it allows for modeling participants’ timing variability on
the same scale as σj, which makes the hyperparameters mσ and
sσ easy to interpret; the posterior distributions of mσ and sσ can
be directly used to estimate the population’s mean timing var-
iability and the SD of the population’s mean timing variability.
A popular choice for the prior distribution on a variability pa-
rameter is otherwise 1/σ2 ~ Gamma(., .) (Gelman, 2006), but
the problem with using this prior is that it is not defined on the
scale of the SD of the asynchronies, which makes it hard to
interpret the posterior distributions of its parameters. This is
fine in the case in which the constant error is the main interest
and the SD of the asynchronies is considered a nuisance param-
eter. When analyzing SMS data, however, it is often the case
that timing variability is the main interest (Repp, 2005).

The prior distributions on μμ and mσ are the same as those
used for the parameters μ and σ in the nonhierarchical model.
The prior distributions for the SD parameters σμ and sσ are
uniform distributions (as was proposed by Gelman, 2006)
with their left boundaries at 0, and with task-related con-
straints defining the right boundaries as for μ and σ in the
nonhierarchical model. The left boundary for σμ is set to ISI/
2 because this is the largest possible between-participants
mean asynchrony SD, since all μjs are bounded within the
interval [–ISI/2, ISI/2]. The largest possible within-
participants asynchrony SD is ISI/2, which implies that the
largest possible value of σσ, the between-participants SD of
the asynchrony SD, is ISI/4. The full specification of the hier-
archical model is then

Yij ~ Right-Censored-Normal(μj, σj, cj),
μj ~ Normal(μμ, σμ),
σj ~ Log-Normal(μσ, σσ),
μμ ~ Uniform(–ISI/2, ISI/2),
σμ ~ Uniform(0, ISI/2),
μσ ~ log(mσ) – σσ

2/2,
σσ ~ √log(sσ2/mσ

2 + 1),
log(mσ) ~ Uniform[log(1), log(ISI/2)],
sσ ~ Uniform(0, ISI/4),

where Yij is the ith asynchrony of the jth participant. After
Kruschke (2011a), a graphical model diagram of this model is
shown in Fig. 4.

An example using the hierarchical model

The data fromBååth andMadison (2012) were analyzed using
the hierarchical model. The study included responses from 30
participants who synchronized finger taps to isochronous tone
sequences with five different ISIs: 600, 1,200, 1,800, 2,400,

and 3,000 ms. Because the data include repeated measure-
ments, with each participant producing many asynchronies
at each ISI level, the hierarchical model was fitted to the data
separately for each ISI level.

After a Bayesian model has been fitted, the estimated pa-
rameters can be investigated in many ways. Depending on
where the interest lies, the parameters can be examined at the
participant level (σj and μj) or the group level (mσ and μμ). If
individual differences are of interest, the variance components
sσ and σμ can be inspected, because they index the degree to
which the participant-level parameters differ. Because the mod-
el is fully Bayesian, estimates for all of the parameters are
readily available after the model has been fitted, including reli-
ability measures in the form of credible intervals.

Because tapping variability is often of interest in SMS
studies (Repp, 2005), the group-level timing variability and
the variability on the participant level were investigated fur-
ther. Figure 5 shows the point estimates and 95% credible
intervals, extracted from the model, of the group mean asyn-
chrony SD (the mσ parameter in the model) and the
participant-level asynchrony SDs for three participants (σ1,
σ2, and σ3) at the five ISI levels. The group mean SD increases
almost linearly as a function of ISI, but we also see that there
are large differences between the three participants. Using the
posterior distribution of the fitted model, it was now possible
to investigate any relation between the parameters. For exam-
ple, there was an 89% probability that Participant 1 had a
lower timing variability than Participant 2 at an ISI of 1,800
ms, and there was a 99% probability that the increase in timing
variability between the ISIs of 1,800 and 2,400 ms was larger
for Participant 1 that for Participant 2. A script that fully rep-
licates these calculations and the fitting of the model can be
found at https://github.com/rasmusab/bayes_timing, together
with the full data set from Bååth and Madison (2012).

Fig. 4 Model diagram showing the specification of the fully hierarchical
model. Here, Yij is the ith asynchrony of the jth participant
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Evaluation of the model

In order to evaluate the model, it was applied to both simulated
data and the experimental data from a study by Repp and
Doggett (2007). The estimates generated by the model were
compared with the common estimates of constant error and
timing variability, the sample mean, and the sample SD. These
estimators will be referred to as the moment estimators. The
Bayesian model can be used to generate point estimates of the
constant error and timing variability for further analysis, or the
hyperparameters of the model can be used directly to draw in-
ferences. In order to be able to compare the Bayesianmodel with
the moment estimators, evaluations were made using the first
approach of analyzing estimated point values. There are differ-
ent methods for calculating point values from the marginal pos-
terior distributions of a Bayesianmodel (see Robert, 2007). Here
the median of the marginal posterior distribution of the param-
eter of interest was taken as the point estimator. When fitting the
Bayesian models, the censoring limit c was fixed to 100 ms.

Evaluation using a simulated data set

The point with a simulation study is to simulate data using a
distribution in which the parameters are known, since com-
parisons can then be made as to how well different estimators
retrieve the true parameters using the simulated data. This
makes it possible to compare different estimators and to gauge
the magnitude of estimation error when the models are applied
to real data.

Simulation of timing asynchronies In order to simulate
timing asynchronies, a number of assumptions have to be
made. As was argued earlier, the timing responses will be
assumed to come from two sources: Either a response is pre-
dictive, resulting from a prediction of the timing of the target
stimulus, or a response is reactive, resulting from a reaction to
the target stimulus. Furthermore, as is shown in Fig. 2, the
distribution of predictive responses is assumed to be a normal
distribution with a mean and SD that are dependent on the ISI.
The reactive responses are assumed to be distributed as an

exponentially modified Gaussian (ex-Gaussian) distribu-
tion—a right-skewed distribution that has been used to de-
scribe the distribution of reaction time responses (Hohle,
1965; Palmer, Horowitz, Torralba, & Wolfe, 2011). The dis-
tribution of the reactive responses is assumed to be indepen-
dent of the ISI. If the predictive and reactive responses are
represented by the random variables XP and XR, the actual
timing responses are distributed as min(XP, XR). This assumes
that a timing response is initiated by whichever of the reactive
and predictive responses is triggered first, and also that partic-
ipants tend not to respond twice to target stimuli.

The distribution of the timing responses has five parame-
ters; μP and σP of the normal distribution for the predictive
responses, and μR, σR, and λR of the ex-Gaussian distribution
for the reactive responses. In order to simulate the timing
responses at different ISIs, these parameters needed to be
assigned reasonable values. For μP and σP, such values were
generated by taking the sample mean and SD of the asyn-
chronies at different ISIs using the finger-tapping data from
the group of musicians in the study by Repp and Doggett
(2007) (see Table 1). Although it has been argued in the pres-
ent article that there are better ways to estimate these param-
eters than using the sample mean and SD, the performance of

Fig. 5 Point estimates with 95% credible intervals of the group timing variability (measured as the asynchrony SDs) and the participant timing
variability for three participants from the hierarchical model, fitted to the data from Bååth and Madison (2012)

Table 1 Values of μP and σP that were used when simulating the timing
asynchronies at different interstimulus intervals (ISIs)

ISI μP σP

1,000 ms –19 ms 28 ms

1,250 ms –23 ms 37 ms

1,500 ms –30 ms 49 ms

1,750 ms –30 ms 61 ms

2,000 ms –17 ms 81 ms

2,250 ms –22 ms 91 ms

2,500 ms –12 ms 106 ms

2,750 ms –20 ms 123 ms

3,000 ms –9 ms 155 ms

3,250 ms –41 ms 157 ms

3,500 ms –24 ms 209 ms
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the estimators used in this specific case were not of great
importance; what mattered was that the values of μP and σP
should be likely values of the constant error and timing vari-
ability. Reasonable values for μR, σR, and λR were generated
by fitting an ex-Gaussian distribution to the simple auditory
reaction time data from a study by Löwgren, Bååth, Lindgren,
Sahlén, and Hesslow (2014). The parameter values used for
the ex-Gaussian distribution were μR = 157ms, σR = 12.5, and
λR = 0.031 ms, which are in agreement with response distri-
butions found in the literature (e.g., Ulrich & Stapf, 1984).
Distributions of the simulated data using these parameter
values are shown in Fig. 6 (cf. the actual asynchrony distribu-
tions from Repp & Doggett, 2007, in Fig. 8 below). For each
of the 11 ISI levels, 500 batches of 90 timing responses each
were simulated.

Comparison with the moment estimators Because the sim-
ulated data were not hierarchical, all data points from the same
ISI level shared the same true parameter values, and only the
nonhierarchical model and the moment estimators were com-
pared. For each of the in total 500 × 11 = 5,500 batches, the
Bayesian model was fit with the JAGS framework (Plummer,
2003), using 1,000 burn-in steps followed by 5,000 MCMC
samples, and the resulting fits were used to calculate point
estimates for μP and σP. Similarly, the moment estimators were
also used to calculate point estimates for μP and σP. Figure 7
shows the mean differences between the estimated parameters
and the true parameters, with a relative parameter estimate of 0

indicating no difference between the true parameter and the
mean of the estimated parameters. Up to an ISI of 2,000 ms,
both the Bayesian model and the moment estimators per-
formed similarly, but from an ISI of 2,000 ms the moment
estimators increasingly underestimated the true values of μ
and σ. At an ISI of 3,500 ms, the mean differences between
the Bayesian estimates and the true parameter values were
1.6 ms for both μ and σ, but for the moment estimators the
mean differences were 16.6 ms for μ and 27.8 ms for σ.

Reanalyzing the data of Repp and Doggett (2007)

In a study by Repp and Doggett (2007), finger-tapping data
were collected from eight musicians and 12 nonmusicians
synchronizing to isochronous sound sequences, using ISI
levels ranging from 1,000 to 3,500 ms.2 The distributions of
timing asynchronies for a subset of those ISI levels are shown
in Fig. 8. Notice that the distributions of asynchronies for the
long ISI levels exhibit the same pattern shown in Fig. 1; that is,
large numbers of responses occur around 200 ms after the
stimulus onset.

The data of Repp and Doggett (2007) were reanalyzed by
calculating point estimates of the constant error and timing
variability for all participants and ISI levels, using both the
moment estimators, as in the original article, and the hierarchi-
cal Bayesian model. This model was fit separately to the data
from the musicians and the data from the nonmusicians with
the JAGS framework, using 1,000 burn-in steps followed by
15,000 MCMC samples. The differences between the moment
and Bayesian estimates are shown in Figs. 9 and 10. On the
basis of the simulation study, the moment estimates should
have a tendency to underestimate the constant error and timing
variability, and the results of the present analysis support this
notion, because the estimates of the Bayesian model are higher
than the moment estimates at the long ISI levels. At short ISI
levels, this underestimation will be negligible, but at longer ISI
levels it will have more of an impact. Whether an analysis
would benefit from avoiding underestimation, then, would de-
pend on the ISI range of the study and whether underestimation
would impact the conclusions of the study. The Bayesianmodel
estimates and the moment estimates start to diverge when the

Fig. 6 Distribution of the simulated timing asynchronies for a subset of the ISI levels, generated according to the procedure described in the Simulation
of Timing Asynchronies section

Fig. 7 Mean errors of the moment estimates and the Bayesian estimates
compared to the actual parameter values. The error bars show the SDs of
the estimates

2 Due to a technical error, the timing asynchronies are shifted +15 ms in
the original data (Repp, 2008). In the subsequent analysis, this shift has
been corrected.
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ISI is longer than 2,500 ms, both for the simulated data and for
the data from Repp and Doggett. Thus, one might want to
consider using a method that avoids underestimation when an-
alyzing a data set that includes ISIs slower than 2,500 ms.

Except for resulting in better parameter estimates, how
does the interpretation of Repp and Doggett’s (2007) data
change when Bayesian estimates are used rather than the mo-
ment estimates? One example of what the Bayesian estimates
change, relative to the moment estimates, is the interpretation
of the source of the reactive responses. Mates et al. (1994)
argued that the reason that reactive responses start occurring
at long ISIs is a qualitative change in participants’ response
strategy, due to participants trying to minimize synchroniza-
tion error. When the ISIs are long enough that predictive re-
sponses result in a large expected synchronization error, a
better strategy might be to react to the stimulus tone, since this
would result in an expected synchronization error smaller than
around 200 ms, the average auditory reaction time.
Alternatively, Repp and Doggett (2007) argued that reactive
responses are not due to a change in response strategy, but
rather to participants tending to produce reactive responses
when failing to produce a predictive response long enough
after the stimulus tone that a reactive response is possible.
To evaluate this possible explanation, they used each partici-
pant’s estimated constant error and timing variability to pre-
dict the percentage of reactive responses, under the

assumption that the predictive responses would be normally
distributed. The percentages of predicted reactive responses
were then compared with the actual percentages of reactive
responses at the different ISI levels, labeling all responses later
than 100 ms as reactive. The predicted percentage of reactive
responses was found to be similar to the actual percentage, and
Repp and Doggett concluded that Bno special strategy of
reacting to the tones needs to be assumed^ (p. 371). The pre-
dicted percentage was, however, slightly lower than the actual
percentage, and this difference could still be explained by, for
example, a change in response strategy.

A reason for the slightly lower estimates of the percentage
of reactive responses might be that the constant error and
timing variability were underestimated due to the use of the
moment estimators. Using the Bayesian estimates to predict
the number of reactive responses yielded a much closer cor-
respondence with the actual percentage of reactive responses,
especially at slow ISIs, as is shown in Fig. 11. Consequently,
the Bayesian estimates change the interpretation of the data to
more strongly support Repp and Doggett’s (2007) explanation
than their original analysis based on moment estimates.

The power of a hierarchical model

In order to investigate the utility of a hierarchical model, the
data from the musicians in Repp and Doggett (2007) were

Fig. 10 Grand means of the sample SD estimates and the Bayesian
estimates of asynchrony SDs for the musicians and nonmusicians in
Repp and Doggett (2007)

Fig. 9 Grand means of the sample mean estimates and the Bayesian
estimates of the mean asynchronies for the musicians and nonmusicians
in Repp and Doggett (2007)

Fig. 8 Distribution of the timing asynchronies from Repp and Doggett (2007) for a subset of the ISI levels
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used. Four partitions of the data set were formed, such that
each of the four tapping trials at each ISI level for each par-
ticipant was randomly assigned to a partition. For each parti-
tion, the constant error and tapping variability were estimated
using the moment estimators, the nonhierarchical model, and
the hierarchical model. The Bayesian models were fit with the
JAGS framework, using 1,000 burn-in steps followed by 15,
000 MCMC samples. For each estimation method, this
yielded 4 (number of partitions) × 8 (number of participants)
× 11 (number of ISI levels) = 352 estimates of constant error
and tapping variability. In the simulation study, it was possible
to compare the estimated parameter values with the actual
parameter values, but here there were no Btrue^ parameter
values. An alternative would be to compare the parameter
estimates from the partitions, which are estimated using only
one fourth of the available data, with estimates that used the
whole data set. The estimates calculated using the whole data
set are assumed to be closer to the true parameters, and by
comparing these with the estimates calculated using the
partitioned data, it was possible to evaluate how well the three
estimation methods retrieve the whole-data estimates. The
whole-data estimates were estimated using the nonhierarchi-
cal Bayesian model.

Figure 12 shows the mean absolute errors of the three esti-
mation methods applied to the partitioned data, as compared
to the estimates based on the whole data. The mean errors of
the hierarchical estimates are consistently lower than the er-
rors of the two other estimation methods. Averaged over the
ISI levels, the medians3 of the absolute errors of the hierarchi-
cal Bayesian estimates were 12% less than for both the

nonhierarchical Bayesian and the moment estimates.
Because a hierarchical model benefits from there being many
participants in the data set, this better performance of the hi-
erarchical model occurred in spite of only eight participants
being included in the analysis. For a data set with even fewer
participants, or for participants that perform very differently
from each other, a hierarchical model is not likely to improve
the estimates much over a nonhierarchical model. However,
for the common case in which many participants have com-
parable performance, using a hierarchical model will likely
result in better estimates.

Discussion

In studies dealing with sensorimotor synchronization (SMS)
and rhythm production, two of the main parameters of interest
are constant error and timing variability. It is common to esti-
mate these parameters by calculating the sample mean and
SD, but using these moment estimators is problematic in two
respects. First, the moment estimators tend to underestimate
the constant error and timing variability at long ISIs. This is
due to a tendency of participants to overshoot the target inter-
val and instead to react to the target stimulus, resulting in a
left-skewed and bimodal distribution for both the stimulus-to-
response asynchronies and interresponse intervals. Second,
when a data set includes many participants, moment estima-
tors fail to model the hierarchical structure of the data, and as a
result all available data are not used when estimating the
parameters.

Fig. 12 Mean absolute errors of the three estimators applied to the
partitioned data from Repp and Doggett (2007), as compared to the
estimates using the full data set. The errors of the hierarchical Bayesian
estimates are consistently lower than the errors of the moment estimates
and of the nonhierarchical Bayesian estimates

3 The median was used here as the measure of central tendency because
the distributions of relative errors were heavily right skewed.

Fig. 11 Actual numbers of reactive responses for the musicians and
nonmusicians in Repp and Doggett (2007), compared to the predicted
numbers of reactive responses using the moment estimates and the
Bayesian estimates
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The Bayesian model presented in this article addressed the
first problem by treating the predictive timing responses as a
partially latent variable and by modeling the timing asyn-
chronies using a right-censored normal distribution. The sec-
ond problem was addressed by modeling the hierarchical
structure of the data. The model was compared with the mo-
ment estimators and was shown to be less biased toward low
estimates of constant error and timing variability and to yield
more accurate estimates when applied to a hierarchical data set
with multiple participants. It was also shown that the Bayesian
estimates changed the interpretation of the data from a study
by Repp and Doggett (2007).

The focus of the evaluation of the Bayesian model was on
contrasting it with the moment estimators. This choice was
made because moment estimators are arguably the most com-
mon estimators of constant error and timing variability in the
literature. The case made against using these estimators when
dealing with SMS data could also be made against other
methods that do not consider the skewness and hierarchical
structure of such data. Some methods other than Bayesian
modeling could also address these two issues. A right-
truncated normal distribution could, for example, be fit to
the data from an SMS task using the approach described by
Ulrich andMiller (1994), or the hierarchical structure could be
modeled using mixed-effects modeling (Baayen et al., 2008).
The combination of these two approaches is, however, more
straightforward in a Bayesian framework.

All comparisons between the Bayesian model and the mo-
ment estimators were made using point estimates generated by
the Bayesian model. This was done to facilitate the compari-
son with the moment estimators. Although it is certainly pos-
sible to use the Bayesian model in this way, it disregards the
much more useful approach of using the posterior probability
distributions of the parameters for inference. In many cases,
the latter approach would make more sense. Why go through
the trouble of estimating point values and analyzing them
when it is possible to directly analyze the distributions of the
hyperparameters already specified in the model? Using the
hierarchical version of the model, it is also possible to make
inferences regarding the population timing variability by
using the posterior probability distribution for the mσ param-
eter, and regarding the population constant error by using the
posterior probability distribution of the μμ parameter. In order
to compare two groups of participants, the data of each group
could be fit separately using the hierarchical Bayesian model,
and then the credible differences between the group parame-
ters could be investigated. One of the main advantages of
doing a full Bayesian analysis is that all model parameters
are estimated, including measures of uncertainty, so that com-
parisons and inferences can readily be made regarding any
parameter or generated quantities.

Because the model is implemented in the flexible modeling
language JAGS, it will be straightforward to extend it. A

possible extension would be to include additional predictor
variables in the model, allowing the timing variability and
constant error to vary not only by ISI, but also by, for example,
participant group or task condition. Another extension would
be to introduce a functional dependency on the timing vari-
ability or constant error between ISI levels. For example, one
could assume that the scalar property (Gibbon, Church, &
Meck, 1984) holds for timing variability by adding the as-
sumption that the asynchrony SD increases linearly as a func-
tion ISI. The supplementary text describes how one could add
such an assumption to the hierarchical model. That text also
describes how one could model a correlation in a participant’s
timing performance between ISI levels. The purpose of the
model presented here was to model the distributional proper-
ties of SMS data. In doing that, it did not consider the time
series properties of the data, such as the serial dependency of
the responses. A further extension of the model would be to
combine it with a time series model of SMS, such as the one
developed by Vorberg and Wing (1996). Because that model
does not separate predictive responses from reactive re-
sponses, it should, like the moment estimators, be biased to-
ward low estimates of timing variability when the timing re-
sponses include reactive responses.
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Supplementary Material
Estimating the Distribution of Sensorimotor

Synchronization Data: A Bayesian Hierarchical Modeling
Approach 

Rasmus Bååth

One advantage of working within a Bayesian statistical framework is
that   it   is  relatively straight   forward to  modify and extend model
definitions.   What   follows   are   four   possible   modifications   of   the
models  presented  in   the  main  paper.  Example   implementation of
these   model   using   R   and   JAGS   can   be   found   here:
https://github.com/rasmusab/bayes_timing

1. Extending the Model with Informative Priors 

One advantage with a Bayesian approach is that prior knowledge
about   task   performance  can  be   incorporated   into   the   analysis.  A
subjective Bayesian model is feasible in the case where there exists
sufficient prior information regarding the parameters. This is often
the   case   regarding   SMS   studies   where   many   published   papers
include descriptive statistics of the distribution of constant error and
timing variability at different tempi (for a comprehensive review see
Repp   and   Su,   2013;   Repp,   2005).   Prior   information   can   be
incorporated   in   the   hierarchical   model   by   replacing   the   vague
toplevel  priors  with distributions   that  can be  made more  or   less
informative   depending   on   the   strength   of   the   prior   information.
What follows is a modification of the hierarchical model presented
in the paper that enables the inclusion of prior information in the
analysis. 
The   prior   on   the   group   mean   µµ  is   a   normal   distribution   with
parameters µµ,µ  and σµ,µ.  The prior on the mean group SD  mσ  is a
lognormal distribution with parameters µm.σ  and σm,σ.  To facilitate
the   use   of   informative   priors   this   prior   is   reparameterized   to   be
specified by its arithmetic mean  mm,σ  and SD  sm,σ.  As proposed by
Gelman, 2006, the SD parameters  sσ  and σσ  are given halfCauchy
priors with parameter  ss,σ  and s ,µσ   respectively. It is straightforward
to   be   informative   regarding   the   halfCauchy   priors   as   the   scale
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parameter defines the median of the distribution (Lunn et al., 2012).
The full specification of model is then:

 

Y ij∼Right-Cenc-Normal (μ j ,σ j ,c j )
μ j∼Normal (μμ ,σ μ)

σ j∼Log-Normal (μσ ,σσ )
μμ∼Normal (μμ,μ ,σμ,μ )
σ μ∼Half-Cauchy (sσ,μ)

μσ=log (mσ )−σ σ
2 /2

σ σ=√ log (sσ
2 /mσ

2+1)
mσ∼Log-Normal (μm,σ ,σm,σ )

sσ∼Half-Cauchy (ss,σ )
μm,σ=log (mm,σ )−σm,σ

2
/2

σm,σ=√ log (sm,σ
2 /mm,σ

2 +1)

Figure 1: A diagram of the informative hierarchical model.
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2. Extending the Model by Adding a Functional Dependency
Between ISI levels.

The hierarchical model presented in the paper currently allows that
data   from   one   participant   informs   the   parameters   of   all   other
participants due to the hierarchical structure of the model. Data from
one   ISI   level   does   not   inform   parameters   for   other   ISI   levels,
however.  A dependency between  ISI   levels   can  be   introduced   in
many   ways,   where   one   possibility   is   to   introduce   a   functional
dependency between ISI levels for the parameters at the group level.
Below is a modification of the hierarchical model where there group
mean   (µµ)   and   the   group   standard   deviation   (mσ)   is   assumed   to
depend  linearly  on   the   ISI   level.  Here  k  indexes   the  different   ISI
levels with ISIk being the ISI in ms at level k.

Y i,j,k∼Right-Cenc-Normal (μ j,k ,σ j,k ,c j,k )
μ j,k∼Normal (μμ,k ,σ μ,k )

σ j,k∼Log-Normal (μσ,k ,σσ,k )
μμ,k =βμ,0+ ISIk⋅βμ,ISI

σ μ,k∼Uniform (0,ISIk /2 )
μσ,k=log (mσ,k )−σσ,k

2 /2

σ σ,k=√ log (sσ,k
2 /mσ,k

2 +1)
mσ,k =βσ,0+ISIk⋅βσ,ISI

sσ,k∼Uniform (0,ISIk /4)

Where the regression coefficients βµ,0, βµ,ISI,  β ,0σ , β ,σ ISI could be given
vague priors. Care has to be taken so that m ,kσ  will not take negative
values.   This   can   be   done   by   shifting   the   ISI   values   so   that   the
shortest ISI level is at the zero and constraining β ,0σ , β ,σ ISI to take on
only positive values. As an example, data from twelve participants
from Bååth and Madison (2012) was used to fit this model. Figure 2
and Figure 3 show the median posterior for the mean asynchrony
and asynchrony SD. The colored circles show the group mean (µµ ,k in
green, mσ  ,k in red), with the colored bars showing one and two SDs
(σµ ,k in green, sσ ,k in red), and the gray circles showing the estimates
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for   each   participant.   In   the   case   where   the   assumed   functional
dependency between ISI levels corresponds well with the data then
this   modification   of   the   hierarchical   model   will   allow   for   better
informed estimates than if data from each ISI level was estimated on
its own. 

Figure 2: Estimated group mean (green) with individual estimates in
grey from the hierarchical model with a functional dependency 
between ISI levels.

4



Figure 3: Estimated group SDs (red) with individual estimates in 
grey from the hierarchical model with a functional dependency 
between ISI levels.

3.   Extending   the   Model   by   Modeling   the   Correlation
between Timing Performance at Different ISI levels.

An alternative way of introducing dependencies between ISI levels
is   to model  parameters  at   the  participant  level  as  coming from a
multivariate   normal   distribution.   This   type   of   dependency   can
capture   patterns   such   as   that   participants   with   large   timing
variability at the 600 ms ISI level also tend to have a relatively large
variability   at   the   1200   ms   ISI   level.   This,   without   imposing   a
functional dependency between ISI levels. Here there many options,
one   or   more   participant   level   parameters   could   be   given   a
multivariate   normal   distribution,   and   the   parameters   of   the
multivariate   normal   distributions   could   in   turn   be   assumed   to
dependent   on   the   ISI   level.   Below   is   a   modification   of   the
hierarchical model presented in the paper where the logarithms of
the  participant   level  asynchrony standard deviations,   log(σj,k),  are
modeled as being distributed as a multivariate normal distribution.
Here k again indexes the different ISI levels with ISIk being the ISI in
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ms at level k, and n being the total number of ISI levels. Now µ , 1...nσ  is
a vector of means and Σ  σ is an n by n  covariance matrix. A default
noninformative   prior   to  use   for  Σ  σ could  be   an   InverseWishard
distribution   with   parameters   In,   a  n  by  n  identity   matrix,   and  n
degrees of freedom.

Y i,j,k∼Right-Cenc-Normal (μ j,k ,σ j,k ,c j,k )
μ j,k∼Normal (μμ,k ,σ μ,k )

log (σ j,k )∼Multi-Normal (μσ,1. .n ,Σσ )
μμ,k∼Uniform (−ISIk /2,ISIk/2 )

σ μ,k∼Uniform (0,ISIk /2 )
μσ,k∼Uniform ( log (1 ) , log (ISIk /2))

Σσ∼ Inv-Wishard ( I n ,df:n )

Figure 4 shows posterior draws from the Multi-Normal (μσ,1 ..n ,Σσ )
distribution that resulted from fitting the model above to finger 
tapping data from the 30 participants in Bååth and Madison (2012). 
There is some positive correlation visible, indicating that 
participants that had a high variability at one ISI level tended to 
have a relatively high variability at other ISI levels. This correlation 
also seems strongest between adjacent ISI levels.
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Figure 4: The estimated correlation structure shown as a sample of 
1000 draws from the posterior distribution of the
Multi-Normal (μσ,1 ..n ,Σσ )  distribution. The red squares marks the 

marginal means of the posterior.

4. Extending the Model to work with Interresponse Intervals.
 
The model described in this paper model the stimulustoresponse
asynchronies   in   an   SMS   task.   When   the   timing   responses   are
selfpaced,   as   in   the   synchronizationcontinuation   paradigm
(Stevens, 1886), there is no referent tone onset and the interresponse
intervals, the time difference between consecutive timed responses,
are instead the focus of the analysis. The model described in the this
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paper can be modified to accommodate interresponse interval data
by   changing   the   rightcensored   normal   distribution   to   a   normal
distribution and by modifying the prior distribution parameters. For
the nonhierarchical model a proposal would be to use:

I i∼Normal ( μ,σ )

μ∼Uniform (T /k,k⋅T )

log (σ )∼Uniform ( log (1 ) , log ( k2⋅T ))
Where T is the target interval and k is a constant that is large enough
so that the prior distributions include all reasonable values of µ and

.σ
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Working Memory, Memory for Musical
Rhythms, and Rhythm Perception

Rasmus Bååth

Abstract

This study investigated the relation between auditory working
memory, rhythmic timing performance, and memory for musical
rhythms. Thirty-six participants were asked to perform each of a
digit span task, a finger tapping task and a rhythm memory task.
A moderately positive correlation was found between auditory
working memory capacity – as measured by the digit span task –
and memory capacity for musical rhythms. However, rhythmic
timing performance and memory capacity correlated only weakly.
Furthermore, the influence of memory capacity on rhythmic tim-
ing performance showed no interaction with the interval length of
the sequences to which participants synchronized. This suggests
that working memory capacity does not play an integral role in
rhythm production.

1 Introduction

Time perception can be characterized as the tracking and experience of
perceptual events over time. Such a view emphasizes the connection
between time perception and memory, as a coherent memory trace of
past events appears to be a requirement for perceiving time. It has even
been suggested (e.g., by Lewis & Miall, 2006) that time perception is
solely dependent on memory traces in working memory.

One aspect of time perception is rhythm perception: the experi-
ence of temporal patterns. While both time and rhythm perception
are supramodal processes – auditory, visual, and tactile stimuli can all
result in time percepts (Hanson, Heron, & Whitaker, 2008) – auditory
stimuli tend to dominate over other type of stimuli in the temporal
domain (Ortega, Guzman-Martinez, Grabowecky, & Suzuki, 2014).
This proves true for rhythm perception, where auditory stimuli take
precedence over visual stimuli, and for sensorimotor synchronization
where participants are better at synchronizing rhythmic responses to
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auditory stimuli (Barakat, Seitz, & Shams, 2015; Glenberg, Mann,
Altman, Forman, & Procise, 1989; Repp & Penel, 2002). Here, senso-
rimotor synchronization refers to rhythmic coordination of perception
and action, where the prototypical sensorimotor synchronization task
involves synchronizing finger taps to the beat of a metronome sequence
(Repp, 2005).

Given the seeming reliance of time perception on a memory com-
ponent, and the dominance of auditory stimuli in rhythm perception,
auditory working memory is a potentially relevant component of rhythm
perception. One of the most influential models of working memory
is found in A. D. Baddeley and Hitch (1974). It describes working
memory as a multi-component system; the component that implements
auditory working memory is the called the phonological loop. Auditory
working memory capacity is commonly measured using a digit span
task (A. Baddeley, 2000; Hester, Kinsella, & Ong, 2004), in which
participants listen to sequences of digits and try to correctly recall as
long sequences as possible. Musicians have been shown to have a larger
working memory capacity than non-musicians (George & Coch, 2011)
and there is a positive correlation between working memory capacity
and musical ability (Hansen, Wallentin, & Vuust, 2012). Saito (2001)
also found a moderate positive correlation between auditory working
memory capacity and performance in a combined rhythm memory and
rhythm reproduction task1 .

Auditory working memory and rhythm perception both have tem-
poral limitations. In Baddeley and Hitch’s model of working memory,
the phonological loop is assumed to hold acoustic information for up to
two seconds (A. Baddeley, 2000). Pöppel (2004) has argued for a two to
three second window for temporal integration: events that fall within
this window can be united into one percept without effort. Rhythm per-
ception requires the integration of sound events over time and temporal
limits of rhythm perception have been modeled as temporal limits in
short term memory (Gilden & Marusich, 2009; Grondin, Laflamme, &
Mioni, 2015). The proposed limits of rhythm perception range from a
little over one second to a couple of seconds. Grondin (2012) notes that
when the interstimulus interval (ISI) between consecutive metronome
sounds becomes longer than around 1.3 seconds, participants become
significantly worse at representing and reproducing the rhythm. The

1Note that this task is presented as a rhythm memory task. However, the rhythms
that the participants were required to remember were of low complexity. The task
score was based on how well participants could reproduce the rhythms by tapping on
a computer keyboard. In my opinion, this makes the task more akin to a sensorimotor
synchronization task than a rhythm memory task.
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experienced difficulty of synchronizing to a metronome also increases
significantly as the ISI of the pacing sequence approaches two seconds
(Bååth & Madison, 2012). The temporal limit of subjective rhythmization
– the subjective grouping of monotone metronome sequences – is in
the vicinity of a two-second ISI (Bolton, 1894; Bååth, 2015b). Partici-
pants’ synchronization to a metronome rhythm becomes more variable
as the tempo gets slower, but there is no evidence for a “slower limit”
of sensorimotor synchronization beyond which point participants are
unable to synchronize (Repp, 2006). However, when asked to tap a
self-paced regular rhythm as slowly as possible, participants tend to tap
at an interval of around 2.5 seconds (McAuley, Jones, Holub, Johnston,
& Miller, 2006). This is sometimes called the slow motor tempo task and
has been employed both as a measure of the a slower limit of rhythm
perception (McAuley et al., 2006) and as a measure of auditory working
memory capacity (Drake & El Heni, 2003).

The current study investigates the relation between auditory work-
ing memory, sensorimotor synchronization performance, and memory
for rhythms. The capacity to memorize rhythms is measured using a
novel rhythm span task taken from (Schaal, Banissy, & Lange, 2014).
The literature on rhythm perception and memory capacity allows a
number of predictions to be made. A first prediction – also made by
(Schaal et al., 2014) – is that auditory working memory capacity and
the capacity to memorize rhythms are positively correlated, possibly as
the result of a common underlying mechanism. Second, both a larger
auditory and a larger rhythm memory capacity should be related to
better performance in a sensorimotor synchronization task. Third, the
relation between memory capacity and synchronization performance
should be stronger when the rhythms to be synchronized to are rela-
tively slower. As synchronization to slow rhythms requires longer time
intervals to be retained and reproduced, a longer memory span should
be more beneficial when synchronizing to a slower rhythm. Similarly,
there might be a positive correlation between slow motor tempo – as a
measure of a slower limit of rhythm production – and memory span.

2 Method

2.1 Participants

Thirty-six participants were recruited through public advertizing (17
women, mean age: 29 years, age SD: 13 years). Twenty-three reported
having experience playing a musical instrument where the mean num-
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ber of years of regular practice was 14 (SD = 13).

2.2 Material

A session consisted of four subtasks: a rhythm span task, a digit span
task, a sensorimotor synchronization task, and a slow motor tempo task
with overt counting. Participants were tested individually in a quiet
room. The rhythm span task, the digit span task and the sensorimotor
synchronization task began the session, where the order of presentation
of these tasks was randomized. The session concluded with the slow
motor tempo task. A session lasted on average 45 minutes. All tasks
were presented on a computer running the Ubuntu operating system.
Audio was presented through a pair of closed headphones in the sen-
sorimotor synchronization task, while in in the digit and rhythm span
tasks audio was presented though a pair of multimedia speakers.

2.2.1 Rhythm span task

Participants were asked to listen to two short rhythm sequences of
equal length and judge whether they were identical or different. De-
pending on participant’s performance sequences got longer or shorter.
A participant who was able to remember and correctly compare longer
sequences received a higher rhythm span score. The task was modeled
after that described by Schaal et al. (2014), which in turn is modeled
after the pitch span task described by Williamson and Stewart (2010).
The task used identical auditory stimuli and the only difference with
respect to Schaal et al. was slight changes in the visual presentation.

The sequences ranged from two to ten beats where one to three
notes were played each beat. They were played at 60 beats per minute
using 70 ms long triangle wave sounds with a frequency of 440 Hz.
Figure 1 shows an example of a pair of four beat sequences where the
rhythm differs.

In each trial, the participant was presented with a pair of sequences,
in turn, where it was randomized whether the rhythms were to be
identical or different. They were separated by a two second pause. The
participant was then asked to indicate whether the sequences were
identical or different by pressing the right or the left Control key on
a computer keyboard. The length of sequences followed a two-up,
one-down staircase procedure: The length of the sequences increased
after two correct responses and decreased after one incorrect response.
The task ended after the sequence length had reversed direction eight
times. The final rhythm span score was calculated by taking the mean
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Figure 1: An example of a pair of rhythm sequences from the rhythm
span task. In this example the correct reponse would be to indicate that
the sequences are different.

of the sequence length on the last six trials where the sequence length
reversed direction.

2.2.2 Digit span task

This task was identical to the forward digit span task described in
the Wechsler Adult Intelligence Scale IV (Wechsler, 2008), with the
one difference: the sequences of digits were pre-recorded and played
back to the participants using a computer instead of being read by the
experimenter. Participants were asked to listen to sequences of digits
and repeat them back, in the same order. The first sequence was two
digits long and two sequences were presented at each sequence length
level. The task terminated when the participant could not remember
either of the sequences at the current length level correctly or after
two sequences of length nine had been presented. Sequences consisted
of the digits “one” to “nine”, with no digit being repeated, and were
read at a rate of one digit per second. The final digit span score was
calculated as the number of correctly recalled sequences; the maximum
attainable score was sixteen.

2.2.3 Sensorimotor synchronization task

In this task participants were asked to synchronize finger taps to isochronous
metronome sequences. They were instructed to start as soon as a se-
quence began and to continue to tap until it ended. A custom-built
tapping board, consisting of a piezoelectric sensor mounted on a 5 cm2

piece of corrugated fiberboard, recorded the finger taps (see Bååth, 2011
for details). Participants tapped with their index finger, their hand rest-
ing on a foam cushion. The stimuli consisted of isochronous sequences
of 440 Hz square wave tones of 20 ms, where each sequence was 31
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tones long. They were presented at four tempi, corresponding to tone
ISIs of 500, 1000, 2000 and 3000 ms. An Arduino microcontroller was
used both for generating the sounds and registring the taps.The task
was divided into three blocks of four trials each, one for each ISI level.
The order of the trials within each block was randomized. Participants
were instructed to tap along to each tone sequence, to start tapping as
soon as the sequence began, and to stop tapping when the sequence
stopped. Participants were requested not to subdivide the beat in any
way, for example, by covert counting or by moving their body.

2.2.4 Slow motor tempo task with overt counting

The same apparatus was used as in the sensorimotor synchronization
task with the difference that the finger tapping was self paced. Prior to
each trial, participants were instructed to tap a regular beat that was
as slow as possible, while still maintaining a regular beat. Participants
were asked to refrain from subdividing the taps in any way. To avoid
covert subdivision, the participants were instructed to count aloud
with each tap, starting from one. These instructions conform to those
described by (McAuley et al., 2006), with the addition of the overt
counting. The task consisted of three trials of 15 taps each.

2.3 Analysis

For the sensorimotor synchronization task, the first four taps in every
trial were discarded, so as to use only those taps where the participants
had had some time to synchronize to the sequence. For each tap, the
tone-to-tap asynchrony was calculated as the time difference between
the tone and the tap, where a negative asynchrony indicates that the
tap preceded the tone. The asynchrony SD was used as a measure of
timing variability and was estimated for each participant and ISI level
using the Bayesian hierarchical method described in (Bååth, 2015a).
This method was used, instead of the conventional sample SD, as the
Bayesian method has been shown to yield more accurate estimates
of timing variability when participants synchronize to slow tempo se-
quences. Timing variability is here used as the measure of performance
in the sensorimotor synchronization task where a low timing variability
is taken to mean high synchronization performance.

A technical fault with the tapping board meant that data from four
participants in the sensorimotor-synchronization task was lost, as well
as that from one participant in the slow motor tempo task. Data from
both tapping tasks was excluded for one participant who, after the
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experiment, admitted to having subdivided the beat covertly. Data was
excluded from two participants in the sensorimotor synchronization
task as analysis suggested that, in many of the trials, they tapped on the
off-beat: the time points in between the tones. However, the exclusion
or inclusion of this data does not change the result of the experiment as
neither estimates, confidence intervals, nor p-values differ substantially
depending on whether this data is excluded or retained.

The slow motor tempo for each participant was estimated by first
calculating the median intertap interval for each trial, then taking the
mean of the three trial medians. The median was used rather than the
mean because some participants were found to produce a small number
of inter-tap intervals deviating greatly from the norm.

Statistical analysis was performed using the statistical computing
environment R (R Core Team, 2012). Relationships between the main
measures were assesssed using Pearson product-moment correlation,
except in the case of timing variability. As timing variability was mea-
sured at four different ISIs for each participant, a linear mixed-effects
model was used to assess how timing variability changed as a function
of the other measures. Mixed-effects model analyzes were performed
using the package lme4 (Bates, Mächler, Bolker, & Walker, 2014).

3 Results

The following measures were calculated for each participant: A digit
span score, a rhythm span score, a slow motor tempo and a timing
variability at the four ISI levels. Slow motor tempo was calculated as
the average intertap interval and timing variability as the asynchrony
SD.

Summary statistics for these measures are presented in Table 1. The
distributions of these measures were found to be positively skewed and
were therefore log-transformed in the subsequent statistical analysis.
Both the median rhythm span and median digit span scores conformed
to median scores reported in other studies on similar populations (Salt-
house & Saklofske, 2010; Schaal et al., 2014).

A positive correlation was found between the rhythm span and digit
span scores (r(34) = 0.48, 95% CI: [0.18, 0.70], p = 0.003). Figure 2 shows
the relation between these measures, including marginal distributions.

The relationship between timing variability and rhythm span score
was investigated using a linear mixed-effects model with log asyn-
chrony SD as the outcome variable and ISI, log rhythm span score, and
the interaction between ISI and rhythm span score as the predictor
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Figure 2: The relation between digit span score and rhythm span score.
The ellipses reflect the correlation one and two SD out from the mean,
here shown as the filled circle.
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Measure Median 25% quantile 75% quantile SD
Rhythm span score 4.6 3.5 5.2 1.2
Digit span score 10 8 11 2.0
Slow motor tempo 2719 ms 2124 ms 3207 ms 1046ms
Asynchrony SD
ISI 500 ms 25 ms 23 ms 30 ms 6.1 ms
ISI 1000 ms 39 ms 34 ms 44 ms 19 ms
ISI 2000 ms 112 ms 87 ms 137 ms 32 ms
ISI 3000 ms 216 ms 204 ms 236 ms 44 ms

Table 1: Summary statistics for the main measures

variables. The rhythm span score and ISI variables were standardized
prior to the regression analysis. As each participant contributes four
data points – one for each ISI level – the intercept and ISI effect were
treated as random effects by participant. Table 2 shows the estimated
regression coefficients. There was a statistically significant effect of ISI
and rhythm span score, where participants with a large rhythm span
score tended to have lower timing variability. However, no substantial
interaction effect was found between ISI and rhythm span score.

Coefficient Estimate 95% CI p
Intercept 4.26 [4.20, 4.33] -
ISI 0.83 [0.80, 0.87] < .001
log( rhythm span score ) -0.088 [-0.15, -0.024] .011
ISI × log( rhythm span score ) 0.0050 [-0.029, 0.039] .77

Table 2: Estimated coefficients for the linear mixed-effects model with
rhythm span score as predictor.

Figure 3 shows the effect of ISI and rhythmspan score. The two
regression lines were obtained from the coefficients in Table 2 by plug-
ging in the 25% and 75% quantiles of the rhythm span score. The results
show a strong effect of ISI, a small constant effect of rhythm span score,
but no substantial interaction effect: i.e., the effect of rhythm span score
does not change significantly between ISI levels.

The relationship between timing variability and digit span score was
investigated again using a linear mixed-effects model, identical to the
one described above but with digit span score as the predictor variable.
As with the analysis of the rhythm span score, digit span score shows
a small but statistically significant effect on timing variability, where
participants with a high digit span score tend to have lower timing
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Figure 3: Effect of ISI and rhythm span score on asynchrony SD as
estimated using a linear mixed-effects model.

variability. No substantial interaction effect was found between ISI and
digit span score. Table 3 shows the estimated regression coefficients.
Figure 4 – made made in the same way as Figure 3 – shows the effect of
ISI and digit-span score.

Coefficient Estimate 95% CI p
Intercept 4.26 [4.20, 4.33] -
ISI 0.83 [0.80, 0.87] < .001
log( Digit span score ) -0.077 [-0.14, -0.012] .027
ISI × log( Digit span score ) -0.0026 [-0.037, 0.031] .88

Table 3: Estimated coefficients for the linear mixed-effects model with
digit span score as predictor.

Slow motor tempo showed close to no correlation with digit span
score (r(33) = 0.034, 95% CI: [-0.30, 0.36], p = .84) and a weak positive
correlation with rhythm span score (r(33) = 0.35, 95% CI: [-0.018, 0.59],
p = 0.063). Figure 5 shows the distribution of participants’ slow motor
tempo. A linear mixed-effects model found no statistically significant
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Figure 4: Effect of ISI and digit span score on asynchrony SD as esti-
mated using a linear mixed-effects model.

effect of slow motor tempo on timing variability.

4 Discussion

The current study examined the relationship between auditory work-
ing memory, sensorimotor synchronization performance, and memory
capacity for rhythms. Auditory working memory was measured using
a standard digit span task (Wechsler, 2008), sensorimotor synchroniza-
tion performance was measured as the timing variability in a finger
tapping task, and memory capacity for rhythms was measured using
the rhythm span task described in Schaal et al. (2014). Participants were
also given a novel slow motor tempo task with overt counting, which
aims at measuring a slower limit of rhythm perception. A number
of predictions were made regarding the relationship between these
measures, based on the current literature on rhythm perception and
working memory.

A first prediction was that there would be a positive correlation
between auditory working memory capacity and capacity to memorize
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Figure 5: Distribution of participants’ slow motor tempo.

rhythms. A correlation of 0.48 was found, which is generally considered
a moderate positive correlation (Taylor, 1990). To put this in perspective,
compare this result with the difference in median rhythm span score
between musicians and non-musicians in the study by Schaal et al.
(2014): 4.5 and 3.8 respectively. In this study, the median rhythm span
score for the group with a digit span score equal to or above the median
was 4.9; that for the group with a digit span score below the median was
3.8. Compared to the difference between musicians and non-musicians
(0.67), the difference between the high and low digit span groups is
considerably larger (1.1). This suggests that working memory capacity
is as strong a predictor of memory capacity for rhythms as being an
active musician. That result could be considered surprising, given that
musicians spend much of their time practicing rhythms.

A second prediction was that both a larger auditory and a larger
rhythm memory capacity should correlate with lower timing variability
in a sensorimotor synchronization task. While the effect of rhythm
span score on timing variability was statistically significant, the effect
was not strong. The asynchrony SD and rhythm span score variables
were log transformed prior to being entered into the regression analysis,
making it difficult to interpret the resulting coefficients (shown in Table
2) directly. However, because the predictors were standardized, it is
possible to compare the magnitude of the coefficients. One SD increase
in ISI, corresponding here to an increase of 1109 ms, is predicted to
increase the log asynchrony SD by 0.83. The effect of rhythm span score
is comparably much smaller: a one SD increase in log rhythm span
score is predicted to decrease the log asynchrony SD by 0.088. the same
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decrease in timing variability that would be predicted by decreasing
the ISI by 117bms. For example, at an ISI of 1000 ms the predicted
asynchrony SD for the group having a below median rhythm span
score is 45 ms, for the group having an above median score it is 39
ms. The difference is only 6 ms, which could be a considered a small
decrease in timing variability.

The effect of auditory working memory on timing variability was
very similar to the effect of rhythm memory capacity, namely, a small
but statistically significant effect of digit span score on asynchrony
SD, with a larger digit span score predicting a smaller asynchrony
SD. Given that sensorimotor synchronization performance is positively
correlated with other capacities such as fluid intelligence (Madison,
Forsman, Blom, Karabanov, & Ullén, 2009) and simple reaction time
(Holm, Ullén, & Madison, 2011), this small effect of memory capacity
on sensorimotor synchronization performance weighs against the idea
that auditory working memory is an integral part of rhythm perception.
Rather, given that working memory is also related to fluid intelligence
(Engle, Tuholski, Laughlin, & Conway, 1999), the relation between
sensorimotor synchronization and memory capacity can be explained,
in part, by that they both correlate with other capabilities.

A third prediction was that the relation between memory capacity
and synchronization performance would be stronger when synchroniz-
ing to slower sequences. This prediction was based on that synchroniza-
tion to slow sequences requires longer time intervals to be retained and
reproduced, and that a long auditory working memory span would
be advantageous for retention of long intervals. The temporal span
of working memory has been suggested to be between two and three
seconds (A. Baddeley, 2000; Pöppel, 2004), with large individual differ-
ences in working memory capacity (Just & Carpenter, 1992); therefore,
the effect of working memory span was expected to be especially pro-
nounced for the sequences with an ISI of 2000 and 3000 ms. No such
interaction effect was found. As Figure 4 shows, the estimated advan-
tage of having a large working memory span was constant over all ISI
levels, this was also the case for rhythm span. Again, the results do
not support the view that working memory is integral to sensorimotor
synchronization.

The results of the slow motor tempo task showed no substantial
correlation with the other measures. One reason might be that the
instructions for the slow motor tempo task were open to interpretation,
leaving participants free to approach the task in many different ways.
A participant might choose to focus on tapping at a very slow tempo,
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resulting in a more variable response, or on responding consistently,
requiring the participant to tap at faster tempo. While slow motor
tempo did not show any substantial correlation with working memory
capacity, the majority of participants had slow motor tempi in the range
of 2000 to 3000 ms, which is also the temporal region of a suggested
temporal span of working memory (A. Baddeley, 2000; Pöppel, 2004).

In conclusion, the results suggest that auditory working memory –
as measured by a forward digit span task – and memory capacity for
rhythms are related. Indeed, a high working memory capacity is as
strong a predictor of rhythm memory capacity as extensive musical
experience, if not stronger. Auditory working memory and memory
capacity for rhythms are also related to sensorimotor synchronization
performance, albeit weakly. The influence of memory capacity on syn-
chronization performance shows no interaction with sequence tempo,
suggesting that auditory memory capacity does not play an integral role
in rhythm production. This is in line with models of rhythm perception,
such as that of (Large, 2010), according to which rhythm perception
does not depend on an explicit memory component.
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The Role of Executive Control in Rhythmic
Timing at Different Tempi

Rasmus Bååth, Trond Arild Tjøstheim, Martin Lingonblad

Abstract

We investigated the role of attention and executive control in
rhythmic timing, using a dual-task paradigm. The main task was
a finger tapping task in which participants were asked to tap their
index finger in time with metronome sequences. The tempo of the
sequences ranged from 600 ms to 3000 ms between each beat. The
distractor task, chosen so as to engage executive control processes,
was a novel covert n-back task. When the tempo was slow, simul-
taneous performance of the tapping and n-back tasks resulted in
significant performance degradation in both tasks. There was also
some dual-task interference at the fast tempo levels, however, the
magnitude of the interference was much smaller in comparison.
The results suggests that, when the tempo is sufficiently slow,
performing rhythmic timing demands attentional resources and
executive control. This accords with models of time perception
that assume that different timing mechanisms are recruited at
different time scales. It also accords with models that assume a
dedicated mechanism for rhythm perception and where rhythm
perception is assumed to have a slower limit.

Like visual perception can be divided into such subcategories as color
perception, motion perception, and depth perception, so too can time
perception. Some aspects of time perception are interval timing, tem-
poral motor coordination, rhythm perception, and meter perception.
It is possible to further subdivide time perception by modality and
time scale. Much debated is whether all aspects of time perception
share a common mechanism and, if not, what aspects of which mech-
anisms they do share. One influential class of models assumes that
timing is governed by a pacemaker-accumulator type mechanism (Ivry,
1996), while more recent theoretical development are dynamical sys-
tems models that assume that timing and rhythm perception depend
on oscillatory neural circuits (Large, 2010; Large & Jones, 1999). The
former have been used successfully to model interval timing but has
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not proven a good model of responses to more complex stimuli such as
musical rhythms, while the latter have been used to model rhythm and
meter perception but have not been applied to interval timing (Grondin,
2010). The two mechanisms – pacemaker-accumulator type and oscilla-
tory based – need not stand in opposition; models exist that incorporate
both (Teki, Grube, & Griffiths, 2011).

Some have suggested that time perception relies on different mech-
anisms, depending on time scale. P. a. Lewis and Miall (2006) report
evidence that different neural mechanism are responsible for timing in-
tervals shorter versus longer than one second. The timing of sub-second
intervals has been termed automatic timing and that of supra-second
intervals has been termed cognitive timing. These terms reflect that au-
tomatic timing recruits circuits within the motor system and auditory
cortex, while cognitive timing depends more on circuits within the
prefrontal and parietal cortices (P. A. Lewis & Miall, 2003). Interval
timing is but one aspect of time perception, and a three second win-
dow has been suggested as the limit of temporal integration (Mates,
Müller, Radil, & Pöppel, 1994; Pöppel, 2004). For rhythmic timing, for
example, synchronizing finger taps to a metronome sequence, there is
evidence supporting a shift in mechanisms between a one- and a two
second interstimulus interval (ISI), i.e., the time interval between each
beat in a rhythmic sequence, where a short ISI implies a fast tempo
and vice versa. The Weber fraction – a measure of relative timing error –
increases markedly from synchronizing to a one-second ISI to synchro-
nizing to a two-second ISI (Grondin, 2012) and so does the perceived
difficulty of synchronizing (Bååth & Madison, 2012). A related notion
is the slower limit of rhythm perception, suggested to lie between a 1.5
second and a 3 second ISI (Repp, 2006).

Brown (1997) hypothesizes that the mechanism responsible for
rhythmic timing above a two second ISI requires more attentional and
executive resources , support for which has been presented by Miyake,
Onishi, and Pöppel (2004). They showed that participants’ ability to syn-
chronize to a metronome sequence while simultaneously performing
a memory task is more impaired at ISIs above two seconds compared
to shorter ISIs. However, a similar study by Holm, Ullén, and Madi-
son (2013) showed no evidence of any interaction effect between the
ISIs of the sequences and whether participants performed an executive
function distractor task or not. Both studies used a dual-task setup:
a standard experimental paradigm that aims to discern whether two
tasks depend on the same limited cognitive capacity, such as executive
control or short term memory (Pashler, 1994). One of the tasks – some-
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times referred to as the main task – is the task under study; the second
task – here called the distractor task – is assumed a priori to tax a certain
cognitive capacity. Participants are either asked to perform the main
task and the distractor task simultaneously or to perform solely the
main task. Performance between the two conditions is then compared.
If the distractor task interferes with performance in the main task, this
is taken to indicate that both tasks rely – at least to some extent – on the
same limited cognitive capacity.

Our study investigated whether rhythmic timing requires more
attentional resources when the tempo is slow compared to when it is
fast, where a fast tempo is loosely defined as an ISI shorter than 1500 ms
and a slow tempo as an ISI longer than 1500ms. In keeping with Miyake
et al. (2004) and Holm et al. (2013), we used a dual-task paradigm, with
a rhythmic timing task as the main task and a distractor task selected to
require attentional resources and executive control.

More specifically, the main task was a sensorimotor synchronization
task in where participants were asked to tap their index finger in time
with metronome sequences. The tempo of the sequences included ISIs
of 600 ms to 3000 ms. The distractor task was a novel variation on the
n-back task. The n-back task was chosen because it is commonly used
to assess executive function (Baddeley, 2003; Kane, Conway, Miura, &
Colflesh, 2007) and because its design facilitates straightforward vary-
ing of attentional resource and executive control demands (Chatham
et al., 2011; Smith & Jonides, 1999). The difficulty with using the
standard n-back task in a dual-task setup is that it requires participants
to make responses throughout the task, either verbally or by key press.
These motor responses might well interfere with the motor responses
in the sensorimotor synchronization task, making it difficult to infer
whether any task interference is due to attentional interference or motor
interference. Therefore, a novel variant of the n-back task was used,
here called the covert n-back task, where the participant makes no overt
responses during the task.

If the distractor task should be found to impair rhythm timing more
at slow tempi than at fast tempi then this would accord with models that
assume different timing mechanisms being recruited depending on time
scale (P. A. Lewis & Miall, 2003). It would also accord with models that
assume a dedicated rhythm-perception mechanism and a slower limit
for rhythm perception, for example, Large’s (2008) proposed resonance
model of rhythm perception.
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1 Method

1.1 Participants

Twenty-four participants were recruited via public advertising (11
women and 13 men, mean age: 27 years, SD: 6 years). Seventeen
participants reported having experience playing a musical instrument
and the mean reported number of years of regular practice was 13 (SD:
10).

1.2 Material

The main task was a sensorimotor synchronization task. A covert
response n-back task was used as distractor task.

1.2.1 Sensorimotor synchronization task

Participants were asked to synchronize finger taps to isochronous
metronome sequences. They were to start as soon as a sequence started
and continue until the sequence ended. They were requested not to
subdivide the beat in any way, for example, by covert counting or by
moving their body. A custom-built tapping board consisting of a piezo-
electric sensor mounted on 5cm2 corrugated fiberboard recorded the
timing of the finger taps (see Bååth, 2011 for details). Participants
tapped with their index finger, their hand resting on a plastic foam
cushion. The stimuli consisted of isochronous sequences of 440 Hz
square wave tones of 20 ms, where each sequence was 45 seconds long.
Sequences were presented at five tempi with ISIs of 600, 897, 1342, 2006,
and 3000 ms, selected so as to be equidistant on a log scale. An Arduino
microcontroller generated the sounds and registered the taps.

1.2.2 Covert response N-back task

Participants were asked to perform a visuospatial 2-back task. The
visual stimuli was modeled after (Jaeggi et al., 2007). It consisted of a
white 3×3 grid on a black background, with a white fixation cross in
the middle and a blue square in one of eight outer grid positions (see
Figure 1). The blue square changed position every 2150 ms, including
700 ms to fade in and 700 ms to fade out. These time intervals were
chosen so that the presentation of the blue square would not regularly
coincide with stimuli in the sensorimotor synchronization task.
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Figure 1: The stimuli presented in the covert response 2-back task.

A given stimulus presentation constituted a target if the blue square’s
current position was the same as two positions back. The square’s posi-
tion was randomized so that, on average, half the presentations were
targets. Instead of responding overtly to each target, participants were
instructed to count the number of targets silently and report the total at
the conclusion of each trial. This variation of the n-back task was used
as the the responses during the 2-back task could otherwise interfere
with the motor part of the sensorimotor synchronization task. Trials
were 47 seconds long: slightly longer than the sensorimotor synchro-
nization task trials. The distractor task was implemented in the Java
programming language using the Processing framework (Reas & Fry,
2007).

1.3 Procedure

Participants were tested individually in a quiet room. Sessions began
with a number of practice trials. First a sensorimotor synchronization
trial at 600ms ISI, then an n-back only trial, and finally a trial where the
two tasks were presented simultaneously. After this the participant was
given four n-back-only-trials to establish baseline performance. For the
sensorimotor-synchronization task, audio was delivered through a pair
of closed headphones. The n-back distractor task used a 27” monitor
positioned 50 cm from the participant.

The experiment proper consisted of four blocks of five sensorimotor
synchronization trials, one for each of the five ISI levels. The order of
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the trials within each block was randomized. Either the first and third
or the second and fourth blocks included the n-back distractor task
and whether or not a participant started with a distractor block was
also randomized. Each participant performed 20 trials, four at each ISI
level, where two included the distractor task and two were without the
distractor task.

1.4 Analysis

The first three taps in every sensorimotor-synchronization trial were
discarded to use only those taps where participants had time to syn-
chronize to the sequence. For each tap, tone-to-tap asynchrony was
calculated as the time difference between the tone and the tap, a nega-
tive asynchrony indicating that the tap preceded the tone and vice versa.
Asynchrony SD was taken as a measure of timing variability and it was
estimated for each participant and ISI level using the Bayesian hierarchi-
cal method described in (Bååth, 2015). This method was used instead
of the conventional sample SD, as it has been shown to yield more
accurate estimates of timing variability when participants synchronize
to slow sequences. Timing variability is here used as the measure of
performance in the sensorimotor synchronization task with low vari-
ability taken to indicate high performance. As a second measure of
timing performance, we used the coefficient of variation, a measure of
timing variability relative to the ISI, calculated for each participant and
condition as the asynchrony SD divided by the ISI.

Statistical analysis was performed using the statistical computing
environment R (R Core Team, 2012). Because timing variability was
measured at five different ISIs for each participant, a linear mixed-effects
model was used to asses how timing variability changed as a function
of ISI and distractor condition. Mixed-effects model analyses were
performed using the package lme4 (Bates, Mächler, Bolker, & Walker,
2014).

2 Results

The dependence of timing variability on ISI and distractor condition
– control or n-back – was investigated by fitting a linear mixed-effects
model, using loge asynchrony SD as the outcome variable and ISI,
distractor condition, and the interaction between ISI and distractor
condition as the predictor variables. The ISI was standardized prior
to fitting the model and the asynchrony SD was loge transformed, as
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Coefficient Estimate 95% CI p
Intercept 4.25 [4.20, 4.36] -
ISI 0.74 [0.69, 0.78] < .001
Distractor condition 0.35 [0.29, 0.40] < .001
ISI × distractor condition 0.11 [0.060, 0.17] .< .001

Table 1: Estimated coefficients for the mixed-effects model with ISI and
distractor condition as predictors.

it was found to have a right skewed distribution. Table 1 reports the
resulting parameter estimates. Figure 2 shows loge asynchrony SD as
a function of ISI, with superimposed regression lines from the mixed-
effects model.

The effect of both ISI and distractor condition on asynchrony SD
was statistically significant, as was the interaction effect, where the
difference between the control and the n-back condition increased with
longer ISI. For example, the mean difference in loge asynchrony SD
between the control and the n-back condition was more than three
times as large at the 3000 ms ISI level compared to the 600 ms ISI level.
This interaction effect can also be seen when looking at the difference
between each participant’s asynchrony SD under the two conditions.
Figure 3 shows how the difference increases as a function of ISI; a
positive difference means that the timing variability was higher in
the n-back than in the control condition. In this and all subsequent
figures, error bars show 95% confidence intervals (CI) calculated as 1.96
× standard error.

The effect of the distractor condition can be seen in other measures
of timing performance. Figure 4 shows the mean coefficient of variation
as a function of ISI and distractor condition; the difference between the
two distractor conditions increases with longer ISIs. Another measure
of timing performance is the percentage of reactive responses (Miyake
et al., 2004; Repp & Doggett, 2007), defined as the percentage of
responses that overshot the target tones by more than 100 ms. Figure 5
shows very few reactive responses at 600 and 897 ms ISIs. For longer
ISIs, the percentage of reactive responses was greater in the n-back
condition.

Timing performance decreased under the n-back condition and so
did performance in the n-back task at slower tempi. Baseline n-back
performance was calculated for each participant as the mean number
of errors made in the four n-back only trials. The difference between
each participant’s baseline performance and performance during the
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Figure 2: Mean timing variability as measured by asynchrony SD for
all participants and ISI levels. The regression lines show the results of
the mixed-effects model analysis.
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Figure 3: Difference between asynchrony SD under the control and
n-back conditions for each participant and ISI level. The connected
points show the grand means. The error bars show 95% CIs.
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Figure 4: Mean coefficient of variation in the control and n-back condi-
tion. The error bars show 95% CIs.
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Figure 5: Mean percentage of reactive responses in the control and
n-back conditions. The error bars show 95% CIs.
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Figure 6: Mean n-back error above the baseline error in the n-back only
trials. Error bars show 95% CIs.

experiment proper was then calculated for each ISI level. Figure 6
show the mean n-back error compared to baseline. The difference was
statistically significantly different from zero at the 3000 ms ISI level (one
sample t-test, M = 1.8, t(22) = 5.2, p < 0.001). For shorter ISIs, average
n-back performance was less than one error above baseline.

3 Discussion

Many models of human timing and time perception have been pro-
posed. One important way in which they differ is whether they posit
a single, overreaching mechanism for timing or assume that timing
recruits different mechanisms depending on the nature of the task.
Regarding rhythmic timing, it has been proposed that different mecha-
nisms are responsible depending on the tempo (Grondin, 2012). Rel-
evant here is the notion of a slower limit of rhythm perception, a pro-
posed temporal boundary where perceiving and synchronizing to a
rhythmic sequence goes from being effortless and automatic to requir-
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ing attention and executive control (Repp, 2006). The present study
used a dual-task setup to investigate whether rhythmic timing requires
more attentional resources at slow tempi compared to comfortable
tempi. The main task was a sensorimotor synchronization task where
participants tapped their finger in time with metronome sequences and
the distractor task was a covert response n-back task.

The results point towards rhythmic timing requiring more atten-
tional resources at slow tempi. At the slowest tempo – at an inter-
stimulus interval (ISI) of 3000 ms – performance of the tapping task
and n-back task simultaneously resulted in a significant performance
degradation in both tasks. The fastest tempo – at an ISI of 600 ms –
also saw dual-task interference, however, the magnitude of interference
was much lower in comparison. It is difficult to identify a particular
tempo at which dual-task interference becomes significant. Looking at
the different performance measures, the largest increase in interference
occurs between an ISI of 897 and 1342 ms for the log asynchrony SD,
and between an ISI of 2006 and 3000 ms for the coefficient of variation,
percentage of reactive responses, and number of errors in the n-back
task. The results reflect the authors’ own experience when piloting the
experiment and participants’ informal verbal reports: keeping the beat
with a fast metronome while doing a 2-back task is easy; keeping the
beat with a metronome that strikes every third second while doing a
2-back task is hard.

The results are consistent with those from the study by Miyake
et al. (2004), who asked participants to perform a word-memory task
and rhythmic tapping task. While Miyake et al. did not analyze tim-
ing variability, they found that participants produced more reactive
responses when both tasks were performed simultaneously. As with the
present study, the difference was not found at shorter ISIs but became
pronounced at 1800 ms ISI.

The results are not consistent with a recent study by Holm et al.
(2013), who asked participants to perform a rhythmic timing task under
either a low or high cognitive load condition. They did not find an
effect of cognitive load on timing performance, nor did they find an
interaction between cognitive load and sequence tempo. The results
may be due to the distractor task used. Under the low cognitive load
condition in Experiment 1 in Holm et al. participants were asked to
tap the rhythm on two buttons using the sequence (1, 2, 1, 2, ...). In
experiment 2, participants instead used four buttons and the sequence
(1, 2, 3, 4, 1, 2, ...). Under the high cognitive load condition, participants
were instead asked to tap the rhythm in a random sequence. A possible
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reason for why no task interference was observed when participants
synchronized at a slow tempo is because the distractor task is easier
to perform at a slower compared to a faster tempo, i.e., the distractor
task is not invariant to the sequence tempo. At 1000 ms a participant
must make twice as many random decisions as at an ISI of 2000 ms. The
cognitive load resulting from the timing task might indeed have been
heavier at the slower tempi, but no interference effect was manifest,
because the cognitive load resulting from the distractor task was lighter
at the slower tempi.

In conclusion, the present study shows that, when the tempo is
sufficiently slow, performing rhythmic timing demands attentional re-
sources and involvement of executive control. These results accord
with neural models of timing that suggest a dedicated, automatic timing
mechanism for short intervals and a general, cognitive timing mech-
anism for longer intervals (P. A. Lewis & Miall, 2003). The results
might also be explained though by a single timing mechanism that
requires more cognitive resources at slower tempi. As shown in this
study, rhythmic timing requires more cognitive resources the slower
the tempo, and both attentional resources and executive control are pre-
sumably limited. Therefore, independent of whether rhythmic timing
depends on one or several mechanisms, this study supports the view
that rhythm perception and rhythmic timing have a slower limit.
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