
LUCS Minor 17, 2011. ISSN 1104-1609.

Construction of a Low Latency Tapping Board.

Rasmus Bååth

Abstract

This technical report describes the construction of a tapping board to be used in
sensorimotor synchronization tasks where the timing of participants’ taps are to be
registered. The tapping board is designed to be comfortable to use and to register
taps with millisecond accuracy.

1 Introduction
Sensorimotor synchronization (SMS) occurs when an agent synchronizes some movement
to a predictable external event. Typical examples of SMS are walking to the pace of a
drum, dancing or making music in an ensemble. One of the most common paradigms
when investigating human SMS is the finger tapping task (Repp, 2005). The finger
tapping task was introduced more than a century ago (see Stevens (1886) for an early
example) and in its basic form a participant is asked to tap with his or her finger in
synchrony with an isochronous sequence of sounds. The timing of the taps is recorded
and can be used calculate different measures of timing error, for example the standard
deviation of the sound-tap asynchrony. There are many variation of this basic task, the
amount of auditory feedback the participant is given can be varied, the participant can
tap on a surface or freely flex the finger, the synchronization phase can be followed by
a continuation phase where the sound sequence is muted while the participant continues
tapping at the same tempo. This last modification is common when trying to dissociate
the timing error from the motor error using, for example, the influential model of Wing
and Kristofferson (1973).

In order to conduct a finger tapping study one needs an apparatus to play the sound
sequence to the participant and to record the timing of participant’s taps. If one is
interested in the relation between successive taps the recorded timing of the taps need
high reliability, that is, if the taps are perfectly periodical there should be a low amount
of temporal jitter in the recorded timing. If one is interested in the relation between the
taps and the sound onsets both the sound playback and the recorded timing needs high
reliability and low latency. A sound needs to start playback immediately when playback
is initiated and there should be no systematic discrepancy between the timing of a tap
and the recorded timing. An example of the result of latency and jitter when recording
timings in a sequence of taps is given in figure 1.

One apparatus that play sounds and record key presses is a standard personal com-
puter (PC). It would be convenient to use a PC as they are readily available but there
are some issues that makes it problematic to use a PC in a tapping study:

• There can be considerable temporal jitter and latency when playing sound through
a PC. This of course depends on the brand and setup but a standard PC with a
consumer grade sound card running Windows can result in audio delays up ranging
from 10 ms to 250 ms depending on the CPU load (MacMillan et al., 2001).

• There can also be temporal jitter and latency in the registration of key presses. No
recent article has been found that measures key press latency but Lane and Ashby
(1987) estimates it to around 6 ms on a first generation Macintosh computer.

1

Figure 1: The result of latency and jitter when recording the timing of a sequence of taps.

• It is hard to measure latency and jitter and to separate key press delay from sound
delay. Wright et al. (2004) measured the key press to sound delay on computers
running Linux and MacOS and and found delays ranging from 10 ms to 80 ms.

• Computer keyboard keys might not be ideal for tapping tasks. It is not enough to
just tap a keyboard key, it has to be pressed, and most computer keyboard keys
makes an audible “click” both when pressed and depressed.

One common way of getting around the problem of the tactile feel of keyboard keys and to
possibly decrease latency and jitter is to use a MIDI interface for sound playback and/or
registering participants’ taps. This approach is common in the literature (see e.g. Repp
and Doggett, 2007; Madison, 2001) but still suffers from the problem that it is hard to
measure delays in sound playback and tap registration. One reason why it is hard to
know the delays in PCs and MIDI equipment is that these are complex, non transparent
systems where there are many processes running simultaneously and where access to the
hardware is hidden behind layers of APIs and abstractions.

Another solution is then to use a system that is simple, that is dedicated to the task
of playing sounds and registering taps and where it is possible to guarantee low upper
bounds of the delays. Such a system is the Arduino (see fig. 2) which is a open-source
electronics prototyping platform that includes, among other things, a 16 MHz processor,
a USB port and several input and output pins (Mellis and Banzi, 2007). Using the
Arduino remedies many of the problems with using a computer. A program implemented
on the Arduino runs close to the hardware and there is no operating system that adds
unpredictable delays. Because of this, when using an Arduino it is possible to achieve
millisecond accuracy when playing sounds and registering taps. Other advantages of the
Arduino are that it is affordable (around $30) and that it is relatively easy to hook it up
to custom built hardware. The disadvantages with using it is that it requires knowledge
of programming (the Arduino uses a subset of the C++ language) and that there is no
straight forward way to connect hardware to it, such as a midi instrument, without some
knowledge of electronics. Another limitation is that the Arduino only can produce square
wave sounds and, while this is enough as a pacing sound for tapping tasks, playing any
other sound requires additional hardware.

This technical report describes the construction of an Arduino based tapping board.
The tapping board was designed to be comfortable to use and to register taps with

2

Figure 2: The latest revision of the Arduino prototyping board, the Arduino Uno. The
length and width of the Arduino Uno are 6.9 and 5.3 inches respectively. More information
can be found on the Arduino home page (www.arduino.cc).

millisecond accuracy. The on-board software was designed to support two types of task:
A standard tapping task where a participant synchronizes his or her taps to an isochronous
sequence of sounds and a spontaneous motor tempo task where there is no pacing signal
and where the participant can tap at any tempo.

2 Construction
The construction consisted of an Arduino, a tapping board with an attached piezo ele-
ment, a standard 3.5mm stereo jack and a small breadboard that was used to connect
the different components. The Arduino was of the “duemilanove” version but this design
should work equally well with any Arduino based board. The tapping board consisted
of a wooden wrist rest and a 5 cm2 tapping pad of corrugated fiberboard that rested
on a piece of plastic foam of the kind commonly found in foam mattresses. This plastic
foam also provided a place to rest for the fingers not involved in the tapping. Below the
tapping pad was an attached piezo element that picked up vibrations from the tapping
pad. Different materials were tried for the pad but the fiberboard was chosen because it
was found to provide a hard surface while still having the elasticity to mediate the taps
to the piezo element. The piezo element was connected to an input pin on the Arduino
and the stereo jack was connected to an output pin. For a picture of a prototype of the
tapping board see figure 4 and for the exact connections made between the components
see figure 3.

The Arduino was programmed to handle two types of common tasks, a standard
tapping task and a spontaneous motor tempo task (details and source code is found in
the appendix). Initiation of the tasks and handling of the resulting data is not made on
the Arduino but has to be handled by a PC connected by the USB port.

When the tapping task is initiated the Arduino plays a given number of square wave
sounds with a given period and records the timing and amplitude of the taps made on the
tapping board. The status of the piezo element is polled more than 10 times every ms.
Each sound is associated with a tap that is time stamped at the time of the peak amplitude
reading in the time interval with a length of the period of the sequence centered on the
sound onset. This method of defining a tap is a robust way of handling noise coming from
the piezo element.

In the spontaneous motor tempo task a given number of taps is recorded without there
being any pacing sequence. Here a tap is counted as every reading with an amplitude
higher than a given threshold. This method of defining a tap is less robust and relies on
that the threshold is at carefully adjusted. If it is set to low noise from the piezo element
will be counted as taps and if it is set to high real taps will be missed. After a tap there
is a 200 ms period in which no tap will be registered; this will limit the tapping rate to

3

Figure 3: The connections made between the different components. The figure is produced
using the Fritzing software (Knörig et al., 2009).

Figure 4: A prototype of the tapping boards with all the components exposed. The piezo
element is hidden below the tapping pad.

4

Figure 5: Consecutive frames from a high speed movie of the tapping pad. The white
arrow points to a LED that is programmed to light up when the pad is tapped.

five taps per second.

3 Evaluation
Even if the Arduino guarantees a millisecond resolution both when playing sounds and
registering taps there is still a need to evaluate the tapping board. First the shape of the
response of the piezo element was checked. If there is a large discrepancy between the first
amplitude reading above noise level and peak amplitude then the method of registering
taps in the tapping task will not work. Testing this, by logging the amplitude with a
0.1 ms resolution, revealed that maximum amplitude was reached within 1-2 ms after the
first amplitude reading above noise level.

A high speed camera with an update frequency of 600 Hz (that is, one frame every
1.7 ms) was used to test the total delay of the system (Sanyo Xacti VPC-HD2000). A
red LED was connected to the Arduino and programmed to light up as soon as the piezo
element registered a tap. This was filmed with the high speed camera and the number of
frames between the tap and the lightning of the LED gives an upper limit to the delay
of the system. The tap onset and the lightning of the LED always occurred in the same
frame (as can be seen in fig. 5) so an upper limit to the delay of the system is 1.7 ms.

References
Knörig, A., Wettach, R., and Cohen, J. (2009). Fritzing: a tool for advancing elec-
tronic prototyping for designers. In Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction, pages 351—-358. ACM.

Lane, D. and Ashby, B. (1987). PsychLib: A library of machine language routines for con-
trolling psychology experiments on the Apple Macintosh computer. Behavior Research
Methods, 19(2):246–248.

MacMillan, K., Droettboom, M., and Fujinaga, I. (2001). Audio latency measurements
of desktop operating systems. In Proceedings of the International Computer Music
Conference, pages 259–262. sn.

Madison, G. (2001). Variability in isochronous tapping: Higher order dependencies as a
function of intertap interval. Journal of Experimental Psychology: Human Perception
and Performance, 27(2):411–422.

Mellis, D. and Banzi, M. (2007). Arduino: An open electronic prototyping platform.
Conference on Human Factors in Computing Systems.

5

Repp, B. and Doggett, R. (2007). Tapping to a very slow beat: A comparison of musicians
and nonmusicians. Music Perception, 24(4):367–376.

Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature.
Psychonomic Bulletin & Review, 12(6):969.

Stevens, L. T. (1886). On The Time-Sense. Mind, 11(43):393 – 404.

Wing, A. and Kristofferson, A. (1973). Response delays and the timing of discrete motor
responses. Attention, Perception, & Psychophysics, 14(1):5–12.

Wright, M., Cassidy, R., and Zbyszynski, M. (2004). Audio and ges-
ture latency measurements on Linux and OSX. Technical report,
http://cnmat.berkeley.edu/system/files/attachments/latencytest.pdf.

Appendix: Source Code
This is the source code for the program running on the Arduino. It is capable of running
standard tapping trials and spontaneous motor tempo trials. The program is not a com-
plete experiment setup but requires a control program running on a host computer. The
source code is released under the open source MIT license (http://www.opensource.org/
licenses/MIT).

// Def in ing the input and output p ins
int piezo_pin = 0 ;
int speaker_pin = 8 ;

// Conf i gura t ion
// The de lay between i n i t i a l i s a t i o n o f the t r i a l and the
// ac t ua l s t a r t o f the t r i a l .
int t r i a l_de l ay = 500 ; // ms

int beep_length = 20 ; //ms
int beep_pitch = 440 ; // Hz

// The t r e s h o l d used f o r the spontaneous motor tempo (SMT)
// ta s k to r e g i s t e r a tap
int th r e sho ld = 25 ;

// Minimum po s s i b l e tap i n t e r v a l in the SMT task
int min_iti = 200 ; // ms .

// Var iab l e to ho ld the analog read ing from p ie zo sensor .
int read ing ;

// Arrays to ho ld the beep onse t times , the tap onse t t imes
// and the ampl i tude o f the taps
unsigned long beep_times [6 4] ; // Max 64 beeps
unsigned long tap_times [6 4] ; // Max 64 taps
int tap_amps [6 4] ; // The ampl i tudes o f the max taps .

void setup (void) {
S e r i a l . begin (9600) ;
pinMode (speaker_pin , OUTPUT) ;

6

pinMode (piezo_pin , INPUT) ;
}

void loop (void) {
int i s i ;
int reps ;
// Waits f o r the input from the s e r i a l por t t h a t w i l l
// dec ide what t a s k i s go ing to be run .
i f (S e r i a l . a v a i l a b l e () > 0) {

int inByte = S e r i a l . read () ;
// This i n d i c a t e s we shou ld s t a r t a t a p_ t r i a l .
i f (inByte == ’ t ’) {

i s i = readInt () ;
r eps = readInt () ;
t ap_tr i a l (i s i , r eps) ;
S e r i a l . p r i n t (" ! ") ; // Marks the end o f the t r i a l

} else i f (inByte == ’ s ’) { // We s t a r t a SMT t r i a l
reps = readInt () ;
smt_tr ia l (reps) ;
S e r i a l . p r i n t l n (" ! ") ; // Marks the end o f the t r i a l

} else i f (inByte == ’b ’) {
// We s t a r t p l a y ing a sequence o f t e s t beeps .
test_beeps () ;

} // e l s e do noth ing . . .
}

}

// S t a r t s a Tap t r i a l wi th rep number o f r e p e t i t i o n s at the
// tempo de f ined by i s i .
void t ap_tr i a l (int i s i , int reps) {

de lay (t r i a l_de l ay) ; // So t ha t the t r i a l doesn ’ t s t a r t d i r e c t l y .
unsigned long start_time = m i l l i s () ;
unsigned long stop_time =

start_time + long (i s i) ∗ long ((reps + 1)) − long (1 0) ;
int beep_count = 0 ;
unsigned long next_beep = start_time + i s i ;

// When we s t a r t and s top l i s t e n i n g f o r the tap
// corresponding to the current beep .
unsigned long s t a r t_ l i s t e n = next_beep − i s i / 2 ;
unsigned long s t op_l i s t en = next_beep + i s i / 2 ;

// Var iab l e to ho ld the maximum ampl i tude o f the r e g i s t e r e d tap
int max_amp = −1;
// Var iab l e to ho ld the time o f the r e g i s t e r e d tap wich
// i s de f ined as occur ing at the peak ampl i tude .
unsigned long peak_time = start_time ;

unsigned long curr_time = m i l l i s () ;
while (curr_time < stop_time) {

curr_time = m i l l i s () ;
i f (curr_time > s t a r t_ l i s t e n) {

read ing = analogRead (piezo_pin) ;
i f (read ing > max_amp) {

7

max_amp = read ing ;
peak_time = curr_time − start_time ;

}
i f (curr_time > s top_l i s t en) {

tap_times [beep_count] = peak_time ;
tap_amps [beep_count] = max_amp;
peak_time = curr_time − start_time ;
max_amp = −1;
beep_count++;
s t a r t_ l i s t e n = next_beep − i s i / 2 ;
s t op_l i s t en = next_beep + i s i / 2 ;

}
}
i f (curr_time >= next_beep) {

beep_times [beep_count] = curr_time − start_time ;
tone (speaker_pin , beep_pitch , beep_length) ;
next_beep = next_beep + i s i ;

}
}

// Now p r i n t i n g the r e s u l t back through the s e r i a l por t .
// Format i s : beep_onset , tap_onset , tap_amplitude
for (int i = 0 ; i < reps ; i++) {

S e r i a l . p r i n t (beep_times [i]) ;
S e r i a l . p r i n t (" , ") ;
S e r i a l . p r i n t (tap_times [i]) ;
S e r i a l . p r i n t (" , ") ;
S e r i a l . p r i n t l n (tap_amps [i]) ;
beep_times [i] = 0 ;
tap_times [i] = 0 ;
tap_amps [i] = 0 ;
de lay (1 0) ;

}
}

// Runs a spontaneous motor tempo ta s k wi th
// rep number o f r e p e t i t i o n .
void smt_tr ia l (int reps) {

happy_blip () ;
int tap_count = 0 ;
do { // Wait f o r f i r s t tap . . .

read ing = analogRead (piezo_pin) ;
} while (read ing < thre sho ld) ;

unsigned long start_time = m i l l i s () ;
unsigned long curr_time = start_time ;

while (tap_count < reps) {
i f (read ing >= thre sho ld) {

tap_times [tap_count] = m i l l i s () − start_time ;
tap_amps [tap_count] = read ing ;
tap_count++;
de lay (min_iti) ;

}

8

read ing = analogRead (piezo_pin) ;
}

// Now p r i n t i n g the r e s u l t back through the s e r i a l por t .
// Format i s : tap_times , tap_amplitude
for (int i = 0 ; i < reps ; i++) {

S e r i a l . p r i n t (tap_times [i]) ;
S e r i a l . p r i n t (" , ") ;
S e r i a l . p r i n t l n (tap_amps [i]) ;
tap_times [i] = 0 ;
tap_amps [i] = 0 ;
de lay (1 0) ;

}
}

// Plays a sequence o f beeps
// which i s u s e f u l f o r c a l i b r a t i n g speaker s .
void test_beeps () {

for (int i = 0 ; i < 16 ; i++) {
delay (6 0 0) ;
tone (speaker_pin , beep_pitch , beep_length) ;

}
}

// Plays a "happy" two note sound
void happy_blip () {

tone (speaker_pin , 400 , 2 0) ;
de lay (2 0) ;
tone (speaker_pin , 600 , 2 0) ;

}

// Reads a two by t e i n t e g e r from the s e r i a l por t .
int readInt () {

int i ;
byte b ;
while (S e r i a l . a v a i l a b l e () == 0) { }
b = S e r i a l . read () ;
i = b ;
while (S e r i a l . a v a i l a b l e () == 0) { }
b = S e r i a l . read () ;
i |= b << 8 ;
return i ;

}

9

