
Map-making Robots:A Review of the O

upan
y Grid MapAlgorithmRasmus Arnling Bååth

Examensarbete för 15 hpInstitutionen för datavetenskap,Naturvetenskapliga fakulteten, Lunds universitetThesis for a diploma in
omputer s
ien
e, 15
redit pointsDepartment of Computer S
ien
e,Fa
ulty of S
ien
e, Lund University

Abstra
tMap-making Robots: A Review of the O

upan
y Grid MapAlgorithm.This thesis reviews the o

upan
y grid algorithm, one of the most pop-ular algorithms for roboti
 mapping. Its ba
kground is des
ribed thor-oughly, highlighting features and short
omings. The algorithm is imple-mented on a robot setup at Lund University Cognitive S
ien
e, and anumber of experiments are
ondu
ted where the algorithm is exposed todi�erent kinds of noise. The out
ome show that the algorithm performswell given its parameters are tuned right. The
on
lusion is made that,in spite of its limitations, the o

upan
y grid map algorithm is a robustalgorithm that works well in pra
ti
e.SammanfattningKartritande Robotar: En utvärdering av �O

upan
y GridMap� Algoritmen.Denna uppsats behandlar en av de populäraste algoritmerna för kar-tritning för robotar, den s.k. �o

upan
y grid map� algoritmen. Dess bak-grund beskrivs grundligt o
h för o
h na
kdelar belyses. Algoritmen im-plementeras på ett robotsystem hos kognitionsvetenenskap vid Lunds uni-versitet, o
h ett antal experiment utföres. Detta för att se hur algoritmenklarar av olika sorters sensorstörningar. Det visar sig att algoritmen klararsig bra såvida dess parametrar är korrekt inställda. Slutsatsen blir att �o
-
upan
y grid map� algoritmen är, trots vissa inneboende begränsningar,en robust algoritm som fungerar väl i praktiken.

A
knowledgmentsI would like to thank my supervisor at Lund University Cognitive S
ien
e, Chris-tian Balkenius, for his help and support. I would also like to thank my supervisorat the Department of Computer S
ien
e, Ja
ek Male
, for a

epting to supervisethis proje
t with su
h a short noti
e.And thank you Birger Johansson for showing me some ropes and keeping myCo
a Cola Zeros�
ool.

Contents1 Introdu
tion 21.1 The Mapping Problem . 21.2 The Approa
h of this Thesis . 32 The O

upan
y Grid Map Algorithm 42.1 The Update Equation . 52.2 The Inverse Sensor Model . 62.3 Comparing Maps . 72.4 Using a Map . 82.4.1 The Wavefront Algorithm 83 Implementation 93.1 The Robot Setup . 93.2 The Implementation . 103.2.1 Ikaros . 103.2.2 Overview of the System 103.2.3 Camera and Tra
ker . 103.2.4 CameraSensor . 113.2.5 CameraSensorModel . 113.2.6 O

upan
yGridMap . 123.3 Experiment Setup . 133.3.1 Evaluating the Implementation 133.3.2 Using the Implementation 144 Results 154.1 Experiment � 1 . 154.2 Experiment � 2 . 164.3 Experiment � 3 . 164.4 Experiment � 4 . 175 Dis
ussion 175.1 Summary . 175.2 Evaluation of the Experiments 175.3 Limitations . 18

1

1 Introdu
tionMaps are extremely useful artifa
ts. A map helps us relate to pla
es we havenever been to and shows us the way if we de
ide we want to go there. Foran autonomous robot a map is even more useful as it
ould, if it is detailedenough, serve as the robots internal representation of the world. The �eld ofroboti
 mapping is quite young and started to re
eive attention �rst in the early80s. Sin
e then a lot of e�ort has gone into
onstru
ting robust roboti
 mappingalgorithms, but the
hallenge is great as the way a human intuitively would builda map
an not be dire
tly appli
able to a robot. Whereas a human possessessuperior vision sensors and
an lo
ate herself by identifying landmarks, a robot,most often, only have sensors that approximates the distan
e to the
losest walls.The
onditions of roboti
 mapping a
tually
loser resembles the
onditions for a15th
entury ship mapping un
harted water. Similar to the ship the robot onlyknows the approximate distan
e to the
losest obsta
les, it
ould happen thatall obsta
les are so far away that the robot senses void and it is often di�
ultfor the robot to keep tra
k of its position and heading. As opposed to the ship,a robot using a faulty map will bump into walls in a disgra
eful manner, whilethe ship, on the other hand, might dis
over Ameri
a.A long-standing goal of AI and roboti
s resear
h has been to
onstru
t trulyautonomous robots,
apable of reasoning about and intera
ting with their en-vironment. It is hard to see how this
ould be realized without general robustmapping algorithms.1.1 The Mapping ProblemWhat is a map? And what does it mean to build one?From a robot's point of view a map is a data stru
ture representing an areaof the world. By means of this data stru
ture the robot should be able tolo
alize it self in and navigate around this area. Any data stru
ture that allowsthe robot to do this quali�es as a map. Many di�erent ways to represent mapshave been proposed but most representations
an be labeled either metri
 ortopologi
al. A metri
 map is a map where the distan
es between every pointof the map are en
oded. What we normally think of as a map, e.g. a worldmap, is a metri
 map. A topologi
al map is a map where only the
onne
tionsbetween a set of features are en
oded, e.g. the
onne
tions between rooms ina building. The map of the London Underground is a real world example of atopologi
al map. A map representation that is both metri
 and topologi
al is
alled a hybrid map. A survey of map representations, with a fo
us on hybridmaps, is given by Bus
hka (2005).To build a map, is to take a number of sensor readings from a robot, asensor reading being a dis
rete-time sample from a robots sensor, and ingratethem into a map. This is not as straight forward as it might sound as there aremany reasons why roboti
 mapping is a hard problem.� Noisy Sensors. The sensors robots are equipped with, even the most ex-pensive ones, are not a

urate enough to be relied on dire
tly. For exam-ple, infra-red proximity sensors are sensitive to di�eren
es in lightning andsome surfa
es does not re�e
t sound well enough to be sensed by sonarbased proximity sensors. 2

� Sensor integration. Even if sensor always supplied
orre
t information,building maps would not be easy. To integrate sensor information intoa map representation many things has to be
onsidered: How should in-formation from sensors be interpreted? How are the sensors positionedon the robot? How should
ontradi
tory information from overlappingsensors be treated?� Lo
alization errors. To build maps the robots pose, that is the robotsposition and heading, has to be know. Naïvely one would think it wouldsu�
e to use the robots odometry, that is e.g. the information about howmany revolutions the wheels of a robot have made. The problem withodometry is that it is never exa
t and that the errors a

umulate overtime.� Dynami
 environments. When the environment is stati
 the mappingtask is basi
ally to partition a spa
e into o

upied spa
e and free spa
e.In reality all environments are dynami
 and this leads to many di�
ulties.How should dynami
 obje
ts be identi�ed? How should dynami
 obje
tsbe represented in the map? More
on
retely, how
ould a robot distinguishbetween a door that has disappeared and a door that just been opened?� High
omputational
omplexity. The number of variables needed to de-s
ribe an area is usually very large irrespe
tive of what map representationis used. This is espe
ially true for metri
 maps in 3D where the spa
e
om-plexity most often is linear with respe
t to the volume of the area mapped.Time
omplexity is also a
on
ern as roboti
 mapping algorithms are sup-posed to work in real time.A introdu
tory text explaining why roboti
 mapping is hard and how this
ouldbe dealt with is given by Thrun (2002).1.2 The Approa
h of this ThesisThis thesis des
ribes an implementation of a map building algorithm for a robotsetup at Lund University Cognitive S
ien
e (LUCS). One goal with the imple-mentation was that it should be possible to use it in the resear
h at LUCS. Themain
hara
teristi
s of the robot setup are that the environment is stati
 andthat the pose is given, therefore it does not indu
e all the di�
ulties mentionedabove. The given pose is not without noise but there will never be the problemwith
umulative position noise. Even if the problem is eased it is still far fromtrivial thus interesting in its own right. The setup will be further des
ribed inse
tion 3.Given these pre
ondition the o

upan
y grid map algorithm, �rst des
ribedby Elfes and Morave
 (1985), was
hosen. Its ba
kground and derivation isdes
ribed in detail in se
tion 2, but the basi
 idea is simple: Represent the partof the world you want to map with a grid. When you observe an obsta
le, markthe
ells
overed by that obsta
le as o

upied.The o

upan
y grid map algorithm was implemented and a number of ex-periments were
ondu
ted to investigate how it would perform given di�erenttypes of sensor noise. The results of the experiments are presented in se
tion 4.3

2 The O

upan
y Grid Map AlgorithmOne naïve way of solving the problem with noisy sensors would be to simply
ount the number of times a sensor reports an obsta
le at a parti
ular pla
e.Ea
h time a position p is s
anned, in
rement a
ounter cp, ea
h time an obsta
leis dete
ted at p, in
rement a
ounter op. The probability that p is o

upied isthen of
ourse op/cp. One problem with this approa
h is that, as time passes,the
ounters will grow larger to eventually over�ow.The o

upan
y grid map algorithm is an algorithm for building metri
 mapsthat solves this problem. It was developed in the mid 80s by Efes and Morave
and is a re
ursive Bayesian estimation algorithm. Here re
ursive means that inorder integrate an nth sensor reading into a map no history of sensor readingsis ne
essary. This is a useful property whi
h implies that sensor readings
anbe integrated online and that the spa
e and time
omplexity is
onstant withrespe
t to the number of sensor readings. The algorithm is Bayesian be
ausethe
entral update equation is based on Bayes theorem:
P (A|B) =

P (B|A)P (A)

P (B)whi
h answers the question �what is the probability of A given B�, if weknow the probabilities P (B|A), P (A) and P (B).The map data stru
ture is a grid, in 2D or 3D, that represents a region inspa
e. This thesis will treat the 2D
ase, thus the region is a re
tangle. The valueof ea
h
ell of the grid is the estimated probability that the
orresponding areain spa
e is o

upied. The region
orresponding to a
ell is always
onsidered
ompletely o

upied or
ompletely empty. One
an have di�erent de�nitionsregarding whether a region is free or o

upied, but often a region is
onsideredo

upied if any part of it is o

upied.The algorithm
onsists of two separate parts: the update equation and asensor model. The update equation, des
ribed in se
tion 2.1, is the basis of thealgorithm and does not have to
hange for di�erent robot setups. The sensormodel on the other hand depends on the robot setup and ea
h robot setuprequires a
ustomized sensor model. One
an
onstru
t sensor models in manyways but the basi
 approa
h is des
ribed in se
tion 2.2.The
omputational
omplexity of the algorithm depends on the implemen-tation of the sensor model. Apart from that, ea
h update loop have time
om-plexity O(n′m′), where n′ and m′ are the number of
olumns and rows of thegrid that are a�e
ted by the
urrent sensor reading. The spa
e
omplexity is
O(nm) where n and m are the total number of
olumns and rows of the grid.An a

essible introdu
tion to o

upan
y grid maps is given by Elfes (1989).The original algorithm is limited in several ways. It requires that the robotspose is given, thus it
an not rely solely on the odometry of the robot. It pre-sumes a stati
 environment or requires sensor readings where dynami
 obsta
leshave been �ltered. Finally the area to be mapped has to be spe
i�ed in ad-van
e. This might sound like severe limitations but in many robot setups one
an assume a stati
 environment and that there is a way to dedu
e the robotspose. The original algorithm has also been su

essfully extended to deal withe.g. unknown robot poses (Thrun et al. 1999).4

2.1 The Update EquationThis se
tion will des
ribe the derivation of the update equation from Bayes the-orem. For greater detail please see Choset et al. (2005). First some de�nitions:Let st denote the sensor reading at time t and let st denote the sensorreadings s0, s1,, . . . , st. Let pt denote the pose at time t and let pt denote theposes p0, p1,, . . . , pt. Let g be the o

upan
y grid and let gx,y be the
ell of gat 〈x, y〉. Let m be the area g
overs and let mx,y be a binary variable thatdenotes the o

upan
y of the area
orresponding to gx,y.
gx,y is the same as P (mx,y|st, pt), the probability that mx,y is o

upiedgiven the �rst t sensor readings. The o

upan
y grid map algorithm assumesthat the o

upan
y of mx,y is independent of the rest of m. Thus to get thevalue P (m|st, pt) we only need to
onsider P (mx,y|st, pt) for all x and y. Wewant to be able to
al
ulate this value re
ursively, that is we want to be ableto go from P (mx,y|st−1, pt−1) to P (mx,y|st, pt) without knowledge of st−1 and

pt−1.The rest of this se
tion will show the derivation of an update equation thatgives P (mx,y|st, pt) given three probabilities; P (mx,y) the prior probability that
mx,y is o

upied, P (mx,y|pt−1, st−1), whi
h we
an retrieve from our grid and
P (mx,y|pt, st), whi
h is
alled the inverse sensor model.The update equation uses a version of Bayes theorem with three variables;

P (A|B, C) =
P (B|A, C)P (A|C)

P (B|C)
(1)whi
h
an be derived in the following way:

P (A|B, C) =
P (A, B, C)

P (B, C)
=

P (B|A, C)P (A|C)P (C)

P (C)P (B|C)
= (2)

P (B|A, C)P (A|C)

P (B|C)
.Using (1), substituting A with mx,y, B with st and C with pt, st−1 gives:

P (mx,y|st, pt) =
P (st|mx,y, p

t, st−1)P (mx,y|pt, st−1)

P (st|pt, st−1)
(3)(3)
an be simpli�ed by assuming that, given we know m, st is independentof st−1and pt−1 giving

P (mx,y|st, pt) =
P (st|mx,y, pt)P (mx,y|pt, st−1)

P (st|pt, st−1)
. (4)By applying (1) on P (st|mx,y, pt) we get

P (st|mx,y, pt) =
P (mx,y|pt, st)P (st|pt)

P (mx,y|pt)
. (5)Now we insert (5) into (4). We noti
e that pt does not
arry any informationabout mx,y if there is no information about st, thus we have

P (mx,y|st, pt) =
P (mx,y|pt, st)P (st|pt)P (mx,y|pt−1, st−1)

P (mx,y)P (st|pt, st−1)
. (6)5

Now we want to get rid of P (st|pt, st−1) and P (st|pt). We do this by noti
ingthat sin
e mx,y is a binary variable, we have P (¬mx,y) = 1− P (mx,y) and
1− P (mx,y|st, pt) =

(1− P (mx,y|pt, st))P (st|pt)(1 − P (mx,y|pt−1, st−1))

(1 − P (mx,y))P (st|pt, st−1)
. (7)Dividing (6) by (7) gives

P (mx,y|st, pt)

1− P (mx,y|st, pt)
=

P (mx,y|pt, st)

1− P (mx,y|pt, st)

1− P (mx,y)

P (mx,y)

P (mx,y|pt−1, st−1)

1− P (mx,y|pt−1, st−1)
.(8)Using the following equality

P (A) =
P (A)

P (A) + 1− P (A)
=

1

1 +
1− P (A)

P (A)

=

(

1 +

(

P (A)

1− P (A)

)−1
)−1

, (9)by substituting P (A) with P (mx,y|st, pt) and P (A)

1− P (A)
with the RHS of (8) weget the �nal update equation:

P (mx,y|st, pt) =

(

1 +
1− P (mx,y|st, pt)

P (mx,y|st, pt)

P (mx,y)

1− P (mx,y)

1− P (mx,y|pt−1, st−1)

P (mx,y|pt−1, st−1)

)−1

.(10)As stated above we need the three probabilities P (mx,y|pt−1, st−1), P (mx,y)and P (mx,y|st, pt) in order to update gx,y with a new sensor reading st. P (mx,y|pt−1, st−1)is easy, its the
urrent value of gx,y. P (mx,y) is normally a
onstant
hosen bythe one implementing the algorithm. Its value is somewhat arbitrary and a
ommon
hoi
e is 0.5 as this makes the middle fa
tor of the RHS of (10) dis-appear. P (mx,y|st, pt) is the probability that gx,y is o

upied given only onesensor reading. To get this value we need an inverse sensor model.2.2 The Inverse Sensor ModelA sensor model is a pro
edure for
al
ulating the probability P (st|m, pt). There-fore it follows that the pro
edure for
al
ulating P (m|st, pt) is
alled an inversesensor model, that is the probability of m given only one sensor reading. Aninverse sensor model
an be though of as fun
tion ism(st, pt) that returns agrid the size of g where the probabilities of P (m|st,pt) are imprinted. Thereis not only one
orre
t way to
onstru
t ism(st, pt) for a given sensor, di�erentapproa
hes have di�erent advantages.An example of how the output of an inverse sensor model
ould look is givenin �gure 1.
6

Figure 1: Illustration of an inverse sensor model for a robot equipped withinfra-red proximity sensors.The pi
ture to the left show what the robot senses. The pi
ture to the rightis the resulting o

upational probabilities. White denotes o

upied spa
e,bla
kdenotes free spa
e and gray denotes unknown spa
e. Noti
e how the bla
kstrokes fade with the distan
e to the robot. This indi
ates that the probabilitythat a sensor dete
ts an obsta
le de
reases with the distan
e to the obsta
le.An inverse sensor model
an be built by hand or learned, for an example ofthe �rst see Elfes and Morave
 (1985) or the one des
ribed in se
tion 3.2.5, foran example of the latter see Thrun et al. (1998).2.3 Comparing MapsIt
ould be that one wants two
ompare two maps. Espe
ially one would wantto
ompare a
onstru
ted o

upan
y grid map with an ideal map to evaluate the�tness of an implementation. An approa
h to measure this is given by Martinand Morave
 (1996).Let I be the ideal map over the same area as a
onstru
ted o

upan
y gridmap m. I then only
ontains the values 1.0, 0.5 and 0.0, where 0.5 indi
atethat the value of the
orresponding
ell is unknown. The probability that a
ell
mx,y represents the same thing as Ix,y is Ix,ymx,y + (1 − Ix,y)(1 −mx,y). Theprobability that m represents the same as I is then:

∏

x,y

(Ix,ymx,y + (1− Ix,y)(1−mx,y)) . (11)A problem is that this value will be very small for large maps. In order toremedy this we take the log2 of (11) and add |I|. This results in the followings
ore measure:
7

Score = |I|+ log2

(

∏

x,y

(Ix,ymx,y + (1 − Ix,y)(1 −mx,y))

) (12)
=
∑

x,y

(1 + log2(Ix,ymx,y + (1− Ix,y)(1−mx,y)) .The maximum s
ore of m is then |I| minus the number of
ells of I that areequal to 0.5.2.4 Using a MapWhen a robot has
onstru
ted a map it should be able to use it for navigation.In the
ase of an o

upan
y grid map this is fortunately relatively straightforward. An o

upan
y grid map g
an be
onverted into an easy to navigatemap in two steps. First g is thresholded so that all
ells of g have either 0.0 or 1.0as value. Then all o

upied
ell, that is
ells with a value of 1.0, are expandedby the radius of the robot. The free
ells of g
an now be
onsidered a graphembedded in the plane where all verti
es represent a position the robot
an bein without the risk of hitting an obsta
le. g is a fully
onne
ted graph and you
an now use many di�erent algorithms to �nd a path between two verti
es. Themost popular algorithm for path �nding is probably the A∗ algorithm.Things are more di�
ult in the
ase of an un�nished o

upan
y grid mapwhere the values of the
ells are in the range (0.0, 1.0). If the goal of the robotlies inside an area that has not been visited, there is no way to
onstru
t a safepath. But by means of a value iteration algorithm, also known as a wavefrontalgorithm, one
an
onstru
t the probably safest path.2.4.1 The Wavefront AlgorithmLet g be the un�nished o

upan
y grid and let gg be the goal
ell of a robot. Theprobability that a robot safely
an pass through one
ell gx,y, is the probabilitythat gx,y is empty. Thus the probability that a robot safely
an travel a path pis the probability
∏

gx,y∈p

gx,y,where {gx,y|gx,y ∈ p}
ontain all those
ells that p traverses. The wavefrontalgorithm will
onstru
t a grid w where ea
h
ell wx,y holds the probabilitythat gg
an be rea
hed from wx,y. Then to �nd a path from any
ell to gg youmove to the neighboring
ell with the highest probability of rea
hing gg, repeatthis until gg is rea
hed.In pseudo-
ode a pro
edure to
onstru
t w is:
wg ← 1.0while w
onvergesfor ea
h x and y

wmax ← the
ell adja
ent to wx,y with highest value
wx,y ← wmax − c if wx,y ≤ wmax − cHere c is a
onstant that denotes the
ost of moving. If c is set to 0.0 thewavefront algorithm will �nd the safest path. The more c is in
reased the more8

will the wavefront algorithm favor short paths over safe paths. More informationabout the wavefront algorithm, and many other algorithms for path�nding,
anbe found in Russell and Norvig (2002).3 ImplementationThis se
tion des
ribes how the o

upan
y grid algorithm was implemented ona robot setup at Lund University Cognitive S
ien
e. The setup is
urrentlyused in the ongoing resear
h regarding robot attention and one purpose of theimplementation was that it should be possible to use in this
ontext. In orderto understand the design
hoi
es made a des
ription of the robot setup will �rstbe given. Then the implementation will be des
ribed.3.1 The Robot SetupThe robot used is the e-pu
k, a small, mu�n sized robot developed by É
olePolyte
hnique Fédérale de Lausanne (www.e-pu
k.org). Its a di�erential wheeledrobot boosting eight infra-red proximity sensors, a
amera, a

elerometer andBluetooth
onne
tivity. The e-pu
k also have very pre
ise step motors to
ontrolits wheels. One problem is that no matter how pre
ise the e-pu
ks odometryis it
an not solely be used to determine the robot's poses. Another problem isthe proximity sensors of the e-pu
k. They have very limited range, roughly 10
m, and are sensitive with respe
t to light
onditions.In order to remedy these problems a video
amera has been pla
ed in the
eiling of room where the robot experiments take pla
e. The robots movementsare restri
ted to a 2× 2 m2 �sandbox� and obje
ts in this area have been given
olor
odes. Robots are wearing bright red plasti

ups, the �oor, the free spa
e,is dark gray and obsta
les are white. Images from the
amera are pro
essed inorder to extra
t the poses of the robots and an image where only the obsta
lesare visible. Given this image and a robots pose a
ir
le se
tor is
ut out of theimage, its
enter being the robots position and its dire
tion being the robotsheading. By using this as the robots sensor reading the robot
an be treatedas if it had a high resolution proximity sensor. The robots are
ontrolled overBluetooth link.

Figure 2: The e-pu
k.9

3.2 The Implementation3.2.1 IkarosThe whole system is implemented using Ikaros, a multi-purpose framework de-veloped at LUCS. Ikaros is written in C++ and is intended for, among otherthings, brain modeling and robot
ontrol. The
entral
on
ept in Ikaros is themodule, and a system built in Ikaros is a
olle
tion of
onne
ted modules. AnIkaros module is simply put, a
olle
tion of inputs and an algorithm that workson these, the result ending up in a number of outputs. A modules inputs andoutputs are de�ned by an Ikaros
ontrol �le using an XML based language whilethe algorithm is implemented in C++.A modules outputs
an be
onne
ted to other modules inputs and to builda working system in Ikaros you would spe
ify these
onne
tion in a
ontrol �le.In this
ontrol �le you
ould also give arguments to the modules. The data that
an be transmitted between modules
an only be in one format, that is arraysand matri
es of �oats. An Ikaros system works in dis
rete time-steps, so
alled�ti
ks�. Ea
h ti
k every module re
eives input and produ
es output.Ikaros
omes with a number of modules, both simple utility modules andmore advan
ed su
h as several image feature extra
tion modules. Ikaros alsoin
ludes a web interfa
e that
an display outputs in di�erent ways. For a detailedintrodu
tion to Ikaros please see Balkenius et al. (2007).3.2.2 Overview of the SystemThe
ore of the map drawing system
onsists of �ve modules: Camera, Tra
ker,CameraSensor, SensorModel and O

upan
yGridMap. Further modules
ouldbe added to the system, e.g. a path planning module and a robot
ontrollermodule. The
onne
tions between these modules are given in �gure 3.
Figure 3: The
onne
tions between the modules of the map drawing system,with added path planning and robot
ontrol modules.3.2.3 Camera and Tra
kerThe Camera and Tra
ker modules were already available and will only be de-s
ribed brie�y.The Camera module is basi
ally a network
amera interfa
e and it is used tofet
h images from the
amera mounted in the
eiling. It outputs three matri
es;RED, GREEN and BLUE, the size of the image,
ontaining the
orresponding
olorintensities of the image. 10

These matri
es are fed into the Tra
ker module that extra
ts the posesof robots and the positions of obsta
les in the image. It outputs one arrayPOSITION with the positions of the robots, one array HEADING with the headingsof the robots and one matrix OBSTACLES with the obsta
les extra
ted from thepi
ture. POSITION is of the form [r1x, r1y, r2x, r2y . . .] where rnx and rny isthe nth robots x and y
oordinate re
eptively. x and y are in the range 0.0 to1.0 and the origo is in the upper left
orner of the image. HEADING is of thesame form as POSITION ex
ept for that rnx and rny de�ne a dire
tion ve
torfor the nth robot. The POSITION and HEADING will be referred to as the POSE.OBSTACLES is in the form of an o

upan
y grid over the area
overed by the
amera image, where 1.0 denotes an obsta
le and 0.0 denotes free spa
e.3.2.4 CameraSensorThe CameraSensor module simulates a high resolution proximity sensor. Itrequires a matrix in the form of Tra
ker's OBSTACLES matrix and an array withthe position of a robot as inputs. More spe
i�
 we want to simulate a topmounted stereo
amera. This is be
ause, in the robot attention resear
h atLUCS, it is useful if the robots has a �head� they
an turn to dire
t attention.The CameraSensor module takes arguments spe
ifying he range of the
ameraand the breadth of the view. Given the pose of the robot a square is
ut out of thematrix, this square is rotated and proje
ted onto another matrix representingthe SENSOR READING of the robot. The SENSOR READING shows everything inthe
ut out square, even obsta
les behind walls. Some simple ray-
asting willsolve this. Rays are shot from the
enter of the robot to the edge lying on theopposite side of the SENSOR READING matrix so that the
ells tou
hed by therays form a
ir
le se
tor. If a ray hits an obsta
le the ray stops and all
ells nottou
hed by any ray obtains the value 0.5 indi
ating it's not part of the sensorreading. CameraSensor then outputs SENSOR READING.3.2.5 CameraSensorModelThe CameraSensorModel is an inverse sensor model tailored to work with theoutput of the CameraSensor. CameraSensorModel has two outputs, both re-quired by O

upan
yGridMap: AFFECTED GRID REGION and OCC PROB GRID.OCC PROB GRID is a matrix the same size as the �nal o

upan
y grid that
on-tains the probabilities P (m|st, pt). AFFECTED GRID REGION is an array of lengthfour de�ning a box bounding the area of the o

upan
y grid that is a�e
ted bythe OCC PROB GRID. The rationale behind this is that O

upan
yGridMap shouldnot have to update the whole o

upan
y grid when only a small area of it isa�e
ted by the
urrent SENSOR READING.The SENSOR READING from CameraSensor is already in the format of ano

upan
y grid, so transforming this into OCC PROB GRID in the format theO

upan
yGridMapmodule requires, is pretty straight forward. First OCC PROBGRID is initialized with P (m), the prior probability, given as an argument toCameraSensorModel. Then the SENSOR READING is rotated and translated, a
-
ording to the robots pose, so that it
overs the
orresponding area of the OCCPROB GRID. The SENSOR READING is then imprinted on the OCC PROB GRID.The values of SENSOR READING; 1.0, 0.5 and 0.0, should not be used dire
tlyas they do not
orrespond to the right probabilities. Instead 0.5 is substi-11

tuted by the prior probability and 1.0 and 0.0 are substituted by two valuesfree_prob and o

_prob given as arguments to CameraSensorModel. The val-ues of free_prob and o

_prob should re�e
t probability that the informationin SENSOR READING is
orre
t. As the Camera and Tra
ker modules are quiteexa
t good values seems to be; free_prob= 0.05 and o

_prob = 0.95. Theperforman
e of o

upan
y grid algorithm depends heavily on these values andthey have to be adjusted a

ording to the reliability of SENSOR READING. Thiswill be further dis
ussed in se
tion 4.3.2.6 O

upan
yGridMapThe O

upan
yGridMap take two inputs in the formats of OCC PROB GRID andAFFECTED GRID REGION. O

upan
yGridMap also
ontains the state of the o
-
upan
y grid
onstru
ted so far; MAP GRID, and the prior probability; pri_prob,given as an argument. The MAP GRID is initialized by giving ea
h
ell the valueof pri_prob.The purpose of O

upan
yGridMap is to update MAP GRID using the updateequation (10). This is done by applying (10) on all
ells in MAP GRID thatare inside the box de�ned by AFFECTED GRID REGION. Here follows the updateequation taken dire
tly from the
ode:for(int i = affe
ted_grid_region[2℄;i <= affe
ted_grid_region[3℄; i++){ for(int j = affe
ted_grid_region[0℄;j <= affe
ted_grid_region[1℄; j++){ float o

_prob = o

_prob_grid[i℄[j℄;map_grid[i℄[j℄ = 1.0 / (1.0 + (1.0 - o

_prob) / o

_prob *prior_prob / (1.0 - prior_prob) *(1.0 - map_grid[i℄[j℄) / map_grid[i℄[j℄);}}An example of an how a MAP GRID
ould look is given in �gure 4.

12

Figure 4: The image to the right shows the probabilities of a number of sensorreadings and the image to the left shows the resulting o

upan
y grid map.3.3 Experiment Setup3.3.1 Evaluating the ImplementationThe implementation of the o

upan
y grid algorithm works very well on therobot setup at LUCS. This is no big surprise as the
onditions are ideal, thereis pra
ti
ally no sensor noise nor pose un
ertainty. In order to investigatehow the implementation would handle di�erent
onditions a number of exper-iments were made, where noise was added to the sensor readings. How theimplementation rea
ts to noise is highly dependent on the two parameters ofCameraSensorModel; free_prob and o

_prob. Thus for ea
h experiment, ex-
ept for � 2, three di�erent values of free_prob and o

_prob were used toillustrate this. The following values were used (using the notation [free_prob,o

_prob℄): [0.01, 0.99℄, [0.2, 0.8℄ and [0.45, 0.55℄. These values will be referredto as the sensor weights, as they re�e
t to what degree the o

upan
y grid mapalgorithm is persuaded by new sensor readings. All experiments used pri_prob= 0.5. The parameters free_prob and o

_probmight seem to be very spe
i�
for the CameraSensorModel but any sensor model will have parameters thatgoverns to what degree the sensor readings should be trusted.The experiments were setup in the following way: A robot was pla
es in themiddle of the 2×2 m2 �sandbox� and a number of obsta
les were pla
ed aroundit, the result is shown in �gure 5 . The �
amera� of CameraSensor was given arange of √2 m and a breadth of 32◦. The robot does not move but ea
h ti
k theheading of the robot is randomized, in this way the robot will eventually have�seen� the whole �sandbox� visible from the
enter. Four di�erent experimentswere then
ondu
ted:1. The ideal
ase. No noise was added, this is to get an measure to
omparethe other experiments with. 13

Figure 5: The experiment setup at LUCS. The real world �sandbox� is to theleft and the grid showing the extra
ted obsta
les is to the right.2. Gaussian white noise was added to the OCC PROB GRID of the CameraSensorModel.The noise had a varian
e of 0.1 and was applied to ea
h
ell OPG[x, y] inthe following way:
OPG[x, y] =











OPG[x, y] + abs(noise) if OPG[x, y] < pri_prob
pri_prob if OPG[x, y] == pri_prob
OPG[x, y]− abs(noise) if OPG[x, y] > pri_prob .This experiment only uses free_prob=0.0 and o

_prob=1.0.3. Salt and Pepper noise was added to 40 % of the OCC PROB GRID thatrepresents the
urrent sensor reading. That is, ea
h
ell that does nohave the value pri_prob is given, by the toss of a
oin, one of the valuesfree_prob and o

_prob by a
han
e of 40%.4. Gaussian white noise was added to he robot's position given as input tothe CameraSensorModel. The noise had a varian
e of 0.001.In order to
ompare the di�erent experiment setups the s
ore measure des
ribedin se
tion 2.3 was used. The ideal map was
onstru
ted by running experiment� 1 with free_prob=0.45 and o

_prob=0.55 for 2000 steps. The probabilitiesof this map was then rounded to the
losest of the values 1.0, pri_prob and 0.0.Given this ideal map the possible maximum s
ore is 640.3.3.2 Using the ImplementationTo show that the map drawing implementation
an be used in pra
ti
e an Ikarossystem was setup to
ontrol an e-pu
k robot. Basi
ally, this is the system shownin �gure 3, in
luding the dashed lines. The goal of the e-pu
k was to �nd anothere-pu
k wandering randomly in a maze. The e-pu
k was not given a path to the14

other e-pu
k, only its position. In order to �nd a path to the other e-pu
k thewavefront algorithm des
ribed in 2.4.1 was used. The e-pu
k would begin withan empty map, whi
h it would build up gradually as it tried di�erent paths tothe other e-pu
k. Eventually, the map would be
omplete enough so that thee-pu
k would �nd a safe path to the other e-pu
k.4 ResultsHere the results of he experiments will be presented. Generally the implemen-tation performed well in all four experiments but what be
ame obvious is thatthe
hoi
e of sensor weights is important. Ea
h experiment was run for a 1 000ti
ks. As all of the experiments
ontain a randomized
omponent a single runmight not produ
e a
hara
teristi
 result. To avoid this, ea
h experiment wasrun ten times and the average of ea
h ti
k was taken. The result of this is showin �gures 6, 7, 8 and 9. When interpretating these
harts one should know thata s
ore above 500
orresponds to a reasonably good map. Rather than lookingfor the sensor weights that eventually results in the best s
ore one should lookfor the sensor weights that
onverge fast to a reasonable s
ore. Most often arobot has more use for a good enough map now, that for a perfe
t map in �veminutes. Be
ause of this, the
harts only display up to ti
k 500, even if themaps
ontinue to
onverge after that.4.1 Experiment � 1This was the ideal
ase and as shown in �gure 6 the algorithm performs wellfor both [0.01, 0.99℄ and [0.2, 0.8℄. Even if [0.45, 0.55℄ surpasses them botheventually, it
onverges to slow to be pra
ti
ally useful.

�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

���

���

���

���

���

���

���

	�
�����

� 	�
����
�� 	�
�����
��� ���������Figure 6: Experiment � 1, the ideal
ase.
15

4.2 Experiment � 2The out
ome of this experiment, as shown in �gure 7, show the strength of theprobabilisti
 approa
h to roboti
 mapping. The algorithm handles the noisysensor readings well and the map
onverges nearly as fast as [0.2, 0.8℄ from �1.

�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

���

���

���

���

���

���

���

	�
����
�
����������������������� �����	�
����
�
 ����� �!�Figure 7: Experiment � 24.3 Experiment � 3Figure 8 show how to high or to low set sensor weight impa
ts the performan
eof the algorithm. While [0.2, 0.8℄
onverges ni
ely, [0.45, 0.55℄
onverges steadybut too slow. As [0.01, 0.99℄ is the most sensible to noise, it
onverges slowlyand never produ
es a reliable map.

�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

���

���

���

���

���

���

���

	�
�����

� 	�
����
�� 	�
�����
��� ���������Figure 8: Experiment � 316

4.4 Experiment � 4In this last experiment the s
ore measure is a bit misleading. All three
hoi
esof sensor weights a
tually produ
es a

eptable maps. What happens in the
aseof [0.01, 0.99℄ is that the edges of the obsta
les get slightly displa
ed, whi
h thes
ore measure penalizes. Even though [0.01, 0.99℄ of � 3 and � 4 s
ore thesame, the map from� 3 is pra
ti
ally unusable, while the map from� 4 is OK.

�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

���

���

���

���

���

���

���

	�
�����

� 	�
����
�� 	�
�����
��� ���������Figure 9: Experiment � 45 Dis
ussion5.1 SummaryThis thesis has des
ribed an implementation of the o

upan
y grid map algo-rithm. This algorithm was implemented to be used with the e-pu
k robot, usingthe Ikaros framework. A derivation of the update equation, the basis of the algo-rithm, was given, as well as a measure for
omparing maps. The implementationworked well. This was no surprise as the sensors and the pose tra
king systemprodu
ed very exa
t information. To investigate how noise would a�e
t the per-forman
e of the algorithm a number of experiments were
ondu
ted. Gaussianwhite noise was applied to the sensors and the pose tra
king system, and so
alled salt and pepper noise was applied to the sensors only. To show that theimplementation was usable in pra
ti
e a system was
onstru
ted that made ane-pu
k draw an o

upan
y grid map. The e-pu
k then used this map to �nd apath to another e-pu
k wandering randomly.5.2 Evaluation of the ExperimentsExperiment � 1 show that the algorithm works well given ideal pre
onditions.This is no surprise, but it is important note how the tuning of sensor weightsimpa
ts the performan
e. When the sensor weights are set so that the algorithmput little trust in the sensors, the map
onverges steadily but unne
essarily slow.17

Experiment � 2 and 3 show the strength of the algorithm, its
apability tohandle independent noise. Both the sensor readings of � 2 and 3 are very noisy,indeed it is often hard for the human eye to separate true obsta
les from noise.The algorithm manages this well, given that the sensor weights are set so thatthe algorithm does not put to mu
h trust in the sensors.Experiment � 4 show that the algorithm
an produ
e an a

eptable mapwhen the position is noisy. The tuning of the sensor weights does not have su
han impa
t as �gure 9 might suggest. This is due to the fa
t that the s
oremeasure does not reward
orre
tly identi�ed obsta
les that are o� by a smalldistan
e. One problem with positional noise is that it does not lead to sensornoise that is statisti
ally independent. If the positional noise is to large thealgorithm will not be able to handle it no matter how the sensor weights aretuned.The implementation of the e-pu
k
ontrol system des
ribed in se
tion 3.3.2worked well in simulation. The two robots steadily moved towards ea
h other,drawing the map and avoiding obsta
les as they went along. When trying thiswith the real robots there were some problems. The Tra
kermodule sometimes
onfused one of the robots for the other one. Also there were some problems
ommuni
ating with two robots over one Bluetooth
onne
tion. Nevertheless,the o

upan
y grid map algorithm, in
ombination with the wavefront pathplanner, always produ
ed a
orre
t path, even if the robot had troubles followingit.5.3 LimitationsThe big limitation of the o

upan
y grid map algorithm is that it does not han-dle unknown poses. There are ways around this and it would be interesting tostudy this further. The algorithm
ould also be tuned in di�erent ways. E.g.when the robot is not moving it might be the
ase that non-independent noisegets imprinted in the map. This might be remedied by developing a s
hemewere sensor readings are blo
ked when the robot is immobile. It
ould alsobe interesting to experiment with variable sensor weights. For example, if therobot has spent a lot of time in an area, the sensor weights might be adjustedso that the robot puts more trust in its internal map and less trust in its sensors.In spite of its limitation the o

upan
y grid map algorithm is, as this thesishas shown, a robust and versatile algorithm. When in need for a roboti
 map-ping algorithm one should have good reasons not to
onsider using it.~
18

Referen
esChristian Balkenius, Jan Morén, and Birger Johansson.System-level
ognitive modeling with ikaros. 2007. URLwww.ikaros-proje
t.org/arti
les/2007/systemlevel/.Pär Bus
hka. An Investigation of Hybrid Maps for Mobile Robots. PhD thesis,Center for Applied Autonomous Sensor Systems, Dept. of Te
hnology, ÖrebroUniversity, 2005.Howie Choset, Sebastian Thrun, Kevin M. Lyn
h, Seth Hut
hinson, GeorgeKantor, Wolfram Burgard, and Lydia E. Kavraki. Prin
iples of Robot Motion.The MIT Press, 2005.A. Elfes. Using o

upan
y grids for mobile robot per
eption and navigation.Computer, 22(6):46�57, June 1989. ISSN 0018-9162.A. Elfes and H. Morave
. High resolution maps fron wide angle sonar. IEEEInternational
onferen
e on Roboti
s and Automation, 1985.Martin C. Martin and Hans Morave
. Robot eviden
e grids. Te
hni
al ReportCMU-RI-TR-96-06, Roboti
s Institute, Carnegie Mellon University, Pitts-burgh, PA, Mar
h 1996.S. Russell and P. Norvig. Arti�
ial Intelligen
e - a Modern Approa
h, 2ndedition. Prenti
e Hall, 2002.S. Thrun. Roboti
 mapping: A survey. In G. Lakemeyer and B. Nebel, editors,Exploring Arti�
ial Intelligen
e in the New Millenium. Morgan Kaufmann,2002. to appear.S. Thrun, A. Bü
ken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning, T. Hof-mann, M. Krell, and T. S
hmidt. Map learning and high-speed navigation inRHINO. In D. Kortenkamp, R.P. Bonasso, and R Murphy, editors, AI-basedMobile Robots: Case Studies of Su

essful Robot Systems. MIT Press, 1998.S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,D. Hähnel, C. Rosenberg, N. Roy, J. S
hulte, and D. S
hulz. MINERVA:A se
ond generation mobile tour-guide robot. In Pro
eedings of the IEEEInternational Conferen
e on Roboti
s and Automation (ICRA), 1999.

19

