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Abstract

Map-making Robots: A Review of the Occupancy Grid Map
Algorithm.

This thesis reviews the occupancy grid algorithm, one of the most pop-
ular algorithms for robotic mapping. Its background is described thor-
oughly, highlighting features and shortcomings. The algorithm is imple-
mented on a robot setup at Lund University Cognitive Science, and a
number of experiments are conducted where the algorithm is exposed to
different kinds of noise. The outcome show that the algorithm performs
well given its parameters are tuned right. The conclusion is made that,
in spite of its limitations, the occupancy grid map algorithm is a robust
algorithm that works well in practice.

Sammanfattning

Kartritande Robotar: En utvirdering av “Occupancy Grid
Map” Algoritmen.

Denna uppsats behandlar en av de populéraste algoritmerna for kar-
tritning for robotar, den s.k. “occupancy grid map” algoritmen. Dess bak-
grund beskrivs grundligt och fér och nackdelar belyses. Algoritmen im-
plementeras pa ett robotsystem hos kognitionsvetenenskap vid Lunds uni-
versitet, och ett antal experiment utfores. Detta for att se hur algoritmen
klarar av olika sorters sensorstérningar. Det visar sig att algoritmen klarar
sig bra savida dess parametrar &r korrekt instéllda. Slutsatsen blir att “oc-
cupancy grid map” algoritmen &r, trots vissa inneboende begrinsningar,
en robust algoritm som fungerar vil i praktiken.
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1 Introduction

Maps are extremely useful artifacts. A map helps us relate to places we have
never been to and shows us the way if we decide we want to go there. For
an autonomous robot a map is even more useful as it could, if it is detailed
enough, serve as the robots internal representation of the world. The field of
robotic mapping is quite young and started to receive attention first in the early
80s. Since then a lot of effort has gone into constructing robust robotic mapping
algorithms, but the challenge is great as the way a human intuitively would build
a map can not be directly applicable to a robot. Whereas a human possesses
superior vision sensors and can locate herself by identifying landmarks, a robot,
most often, only have sensors that approximates the distance to the closest walls.
The conditions of robotic mapping actually closer resembles the conditions for a
15th century ship mapping uncharted water. Similar to the ship the robot only
knows the approximate distance to the closest obstacles, it could happen that
all obstacles are so far away that the robot senses void and it is often difficult
for the robot to keep track of its position and heading. As opposed to the ship,
a robot using a faulty map will bump into walls in a disgraceful manner, while
the ship, on the other hand, might discover America.

A long-standing goal of AI and robotics research has been to construct truly
autonomous robots, capable of reasoning about and interacting with their en-
vironment. It is hard to see how this could be realized without general robust
mapping algorithms.

1.1 The Mapping Problem

What is a map? And what does it mean to build one?

From a robot’s point of view a map is a data structure representing an area
of the world. By means of this data structure the robot should be able to
localize it self in and navigate around this area. Any data structure that allows
the robot to do this qualifies as a map. Many different ways to represent maps
have been proposed but most representations can be labeled either metric or
topological. A metric map is a map where the distances between every point
of the map are encoded. What we normally think of as a map, e.g. a world
map, is a metric map. A topological map is a map where only the connections
between a set of features are encoded, e.g. the connections between rooms in
a building. The map of the London Underground is a real world example of a
topological map. A map representation that is both metric and topological is
called a hybrid map. A survey of map representations, with a focus on hybrid
maps, is given by Buschka (2005).

To build a map, is to take a number of sensor readings from a robot, a
sensor reading being a discrete-time sample from a robots sensor, and ingrate
them into a map. This is not as straight forward as it might sound as there are
many reasons why robotic mapping is a hard problem.

e Noisy Sensors. The sensors robots are equipped with, even the most ex-
pensive ones, are not accurate enough to be relied on directly. For exam-
ple, infra-red proximity sensors are sensitive to differences in lightning and
some surfaces does not reflect sound well enough to be sensed by sonar
based proximity sensors.



e Sensor integration. Even if sensor always supplied correct information,
building maps would not be easy. To integrate sensor information into
a map representation many things has to be considered: How should in-
formation from sensors be interpreted? How are the sensors positioned
on the robot? How should contradictory information from overlapping
sensors be treated?

e Localization errors. To build maps the robots pose, that is the robots
position and heading, has to be know. Naively one would think it would
suffice to use the robots odometry, that is e.g. the information about how
many revolutions the wheels of a robot have made. The problem with
odometry is that it is never exact and that the errors accumulate over
time.

e Dynamic environments. When the environment is static the mapping
task is basically to partition a space into occupied space and free space.
In reality all environments are dynamic and this leads to many difficulties.
How should dynamic objects be identified? How should dynamic objects
be represented in the map? More concretely, how could a robot distinguish
between a door that has disappeared and a door that just been opened?

e High computational complexity. The number of variables needed to de-
scribe an area is usually very large irrespective of what map representation
is used. This is especially true for metric maps in 3D where the space com-
plexity most often is linear with respect to the volume of the area mapped.
Time complexity is also a concern as robotic mapping algorithms are sup-
posed to work in real time.

A introductory text explaining why robotic mapping is hard and how this could
be dealt with is given by Thrun (2002).

1.2 The Approach of this Thesis

This thesis describes an implementation of a map building algorithm for a robot
setup at Lund University Cognitive Science (LUCS). One goal with the imple-
mentation was that it should be possible to use it in the research at LUCS. The
main characteristics of the robot setup are that the environment is static and
that the pose is given, therefore it does not induce all the difficulties mentioned
above. The given pose is not without noise but there will never be the problem
with cumulative position noise. Even if the problem is eased it is still far from
trivial thus interesting in its own right. The setup will be further described in
section 3.

Given these precondition the occupancy grid map algorithm, first described
by Elfes and Moravec (1985), was chosen. Its background and derivation is
described in detail in section 2, but the basic idea is simple: Represent the part
of the world you want to map with a grid. When you observe an obstacle, mark
the cells covered by that obstacle as occupied.

The occupancy grid map algorithm was implemented and a number of ex-
periments were conducted to investigate how it would perform given different
types of sensor noise. The results of the experiments are presented in section 4.



2 The Occupancy Grid Map Algorithm

One naive way of solving the problem with noisy sensors would be to simply
count the number of times a sensor reports an obstacle at a particular place.
Each time a position p is scanned, increment a counter c,, each time an obstacle
is detected at p, increment a counter o,. The probability that p is occupied is
then of course 0,/c,. One problem with this approach is that, as time passes,
the counters will grow larger to eventually overflow.

The occupancy grid map algorithm is an algorithm for building metric maps
that solves this problem. It was developed in the mid 80s by Efes and Moravec
and is a recursive Bayesian estimation algorithm. Here recursive means that in
order integrate an nth sensor reading into a map no history of sensor readings
is necessary. This is a useful property which implies that sensor readings can
be integrated online and that the space and time complexity is constant with
respect to the number of sensor readings. The algorithm is Bayesian because
the central update equation is based on Bayes theorem:

P(B|A)P(A)
P(B)

which answers the question “what is the probability of A given B”, if we
know the probabilities P(B|A), P(A) and P(B).

The map data structure is a grid, in 2D or 3D, that represents a region in
space. This thesis will treat the 2D case, thus the region is a rectangle. The value
of each cell of the grid is the estimated probability that the corresponding area
in space is occupied. The region corresponding to a cell is always considered
completely occupied or completely empty. One can have different definitions
regarding whether a region is free or occupied, but often a region is considered
occupied if any part of it is occupied.

The algorithm consists of two separate parts: the update equation and a
sensor model. The update equation, described in section 2.1, is the basis of the
algorithm and does not have to change for different robot setups. The sensor
model on the other hand depends on the robot setup and each robot setup
requires a customized sensor model. One can construct sensor models in many
ways but the basic approach is described in section 2.2.

The computational complexity of the algorithm depends on the implemen-
tation of the sensor model. Apart from that, each update loop have time com-
plexity O(n'm’), where n’ and m’ are the number of columns and rows of the
grid that are affected by the current sensor reading. The space complexity is
O(nm) where n and m are the total number of columns and rows of the grid.
An accessible introduction to occupancy grid maps is given by Elfes (1989).

The original algorithm is limited in several ways. It requires that the robots
pose is given, thus it can not rely solely on the odometry of the robot. It pre-
sumes a static environment or requires sensor readings where dynamic obstacles
have been filtered. Finally the area to be mapped has to be specified in ad-
vance. This might sound like severe limitations but in many robot setups one
can assume a static environment and that there is a way to deduce the robots
pose. The original algorithm has also been successfully extended to deal with
e.g. unknown robot poses (Thrun et al. 1999).

P(A|B) =



2.1 The Update Equation

This section will describe the derivation of the update equation from Bayes the-
orem. For greater detail please see Choset et al. (2005). First some definitions:

Let s; denote the sensor reading at time ¢ and let s' demote the sensor
readings so, s1,,...,5¢ Let p, denote the pose at time ¢ and let p? denote the
poses po,Pi,,--.,P+- Let g be the occupancy grid and let g, , be the cell of g
at (z,y). Let m be the area g covers and let m, , be a binary variable that
denotes the occupancy of the area corresponding to g y.

gz,y 1s the same as P(my,|s', p'), the probability that m,, is occupied
given the first ¢ sensor readings. The occupancy grid map algorithm assumes
that the occupancy of m,, is independent of the rest of m. Thus to get the
value P(m|s’,p') we only need to consider P(m ,|st,pt) for all z and y. We
want to be able to calculate this value recursively, that is we want to be able
t(t)iglo from P(my ,|s'™1, p'=1) to P(my ,|st, p') without knowledge of s'~! and
pit.
The rest of this section will show the derivation of an update equation that
gives P(my ,|st, p') given three probabilities; P(m, ) the prior probability that
my., is occupied, P(my ,|p'~!, s'~1), which we can retrieve from our grid and
P(my y|pt, st), which is called the inverse sensor model.

The update equation uses a version of Bayes theorem with three variables;

P(A|B,C) = P(B Iz;,(gfg)(AlC) (1)

which can be derived in the following way:

P(A,B,C) P(B|A,C)P(A|C)P(C)

PAB.C) = sy =~ pOpPBIo) @)
P(B|A, C)P(A|C)
P(B|C)

Using (1), substituting A with m, ,, B with s; and C with p’, s*~! gives:
P(5t|mm,y7ptv Stil)P(mzqy|pt7 Stil) (3)
P(se|p*,s'~)

(3) can be simplified by assuming that, given we know m, s; is independent
of s*~land p'~! giving

P(my y|s',p") =

P(st|ma.y, pr) Py P, s'™1)
P(se|pt, s'71) '

By applying (1) on P(s¢|mg.y, pt) we get

(4)

P(my y|s',p") =

P(mm,y|pt, St)P(5t|pt)
Plglpe) )

Now we insert (5) into (4). We notice that p; does not carry any information
about m, y if there is no information about s¢, thus we have

P(St|mm,y7pt) =

P(ma y|pr, s0) P(selpt) P(may[p'™", s

Pl ) PlsoJpt 5 ©)

P(may|s',p") =



Now we want to get rid of P(s?|p’, s*=1) and P(s¢|p:). We do this by noticing
that since m, , is a binary variable, we have P(-my,) =1 — P(m,,) and

(1 = P(ma y[pe, 50)) P(selpe) (1 = P(mgylp*—", s"71)
(1 = P(myy))P(st|pt, s71)

1-— P(mzﬁy|st,pt) =

- (7

Dividing (6) by (7) gives

P(mg s, p") _ P(mgylpe;si) 1= P(may) Plmaylp™™'s'™")
1- P(mw,y|5tapt) 1- P(mw,y|ptv st) P(mny) 1- P(mw,y|pt_la St_l).
(8)

Using the following equality

w1 P \ )
PO PP 1—7P<A>_<1+<1‘7P<A>) ) v

by substituting P(A) with P(m,_,|s’, p') and % with the RHS of (8) we

get the final update equation:

L~ P(maylsepr) Plmagy) 1- P(mm,y|p“,s“>)‘1
P(maylse,pr) 1= P(may) Plmeylp=!,s=1) o)
10
As stated above we need the three probabilities P(mg ,|p'~1, s=1), P(m,,,)

and P(my 4|s¢, pt) in order to update g, , with a new sensor reading s;. P(mg.,|p'—t, s'™1)
is easy, its the current value of g, ,. P(mg,) is normally a constant chosen by
the one implementing the algorithm. Its value is somewhat arbitrary and a
common choice is 0.5 as this makes the middle factor of the RHS of (10) dis-
appear. P(mg ,|s:,pt) is the probability that g, , is occupied given only one

sensor reading. To get this value we need an inverse sensor model.

P(mm7y|st,pt) = <1 +

2.2 The Inverse Sensor Model

A sensor model is a procedure for calculating the probability P(s¢|m, p;). There-
fore it follows that the procedure for calculating P(m|s:, p;) is called an inverse
sensor model, that is the probability of m given only one sensor reading. An
inverse sensor model can be though of as function ism(s:,p;) that returns a
grid the size of g where the probabilities of P(m|s; p;) are imprinted. There
is not only one correct way to construct ism(sy,p;) for a given sensor, different
approaches have different advantages.

An example of how the output of an inverse sensor model could look is given
in figure 1.



Figure 1: Ilustration of an inverse sensor model for a robot equipped with
infra-red proximity sensors.

The picture to the left show what the robot senses. The picture to the right
is the resulting occupational probabilities. White denotes occupied space,black
denotes free space and gray denotes unknown space. Notice how the black
strokes fade with the distance to the robot. This indicates that the probability
that a sensor detects an obstacle decreases with the distance to the obstacle.

An inverse sensor model can be built by hand or learned, for an example of
the first see Elfes and Moravec (1985) or the one described in section 3.2.5, for
an example of the latter see Thrun et al. (1998).

2.3 Comparing Maps

It could be that one wants two compare two maps. Especially one would want
to compare a constructed occupancy grid map with an ideal map to evaluate the
fitness of an implementation. An approach to measure this is given by Martin
and Moravec (1996).

Let I be the ideal map over the same area as a constructed occupancy grid
map m. I then only contains the values 1.0, 0.5 and 0.0, where 0.5 indicate
that the value of the corresponding cell is unknown. The probability that a cell
Mg,y represents the same thing as I, is Iy ymay + (1 — Ip)(1 — my,y). The
probability that m represents the same as [ is then:

H Ta,ymay + (1= Lo y) (1 —may)). (11)

z,y

A problem is that this value will be very small for large maps. In order to
remedy this we take the logs of (11) and add |I|. This results in the following
score measure:



z,y

Score = |I| 4 logs (H Tz, ymay + (1 — Iy ) (1 — mmy))> (12)

Z (1 + lOg2(I;1;7ymmyy + (1 - Iw,u)(l - mﬂﬂﬂ/)) :
z,y

The maximum score of m is then |I| minus the number of cells of I that are
equal to 0.5.

2.4 Using a Map

When a robot has constructed a map it should be able to use it for navigation.
In the case of an occupancy grid map this is fortunately relatively straight
forward. An occupancy grid map g can be converted into an easy to navigate
map in two steps. First g is thresholded so that all cells of g have either 0.0 or 1.0
as value. Then all occupied cell, that is cells with a value of 1.0, are expanded
by the radius of the robot. The free cells of g can now be considered a graph
embedded in the plane where all vertices represent a position the robot can be
in without the risk of hitting an obstacle. g is a fully connected graph and you
can now use many different algorithms to find a path between two vertices. The
most popular algorithm for path finding is probably the A* algorithm.

Things are more difficult in the case of an unfinished occupancy grid map
where the values of the cells are in the range (0.0, 1.0). If the goal of the robot
lies inside an area that has not been visited, there is no way to construct a safe
path. But by means of a wvalue iteration algorithm, also known as a wavefront
algorithm, one can construct the probably safest path.

2.4.1 The Wavefront Algorithm

Let g be the unfinished occupancy grid and let g, be the goal cell of a robot. The
probability that a robot safely can pass through one cell g, ,, is the probability
that g, , is empty. Thus the probability that a robot safely can travel a path p
is the probability

H gm,yv

9o,y €EP

where {gs 4|92,y € p} contain all those cells that p traverses. The wavefront
algorithm will construct a grid w where each cell w, , holds the probability
that g4 can be reached from w, ,. Then to find a path from any cell to g, you
move to the neighboring cell with the highest probability of reaching g4, repeat
this until g, is reached.

In pseudo-code a procedure to construct w is:

wy <— 1.0
while w converges
for each = and y
Wmae < the cell adjacent to w,, with highest value
Wyg,y < Wmaz —C if Wy, y S Wmax — C

Here c is a constant that denotes the cost of moving. If ¢ is set to 0.0 the
wavefront algorithm will find the safest path. The more ¢ is increased the more



will the wavefront algorithm favor short paths over safe paths. More information
about the wavefront algorithm, and many other algorithms for pathfinding, can
be found in Russell and Norvig (2002).

3 Implementation

This section describes how the occupancy grid algorithm was implemented on
a robot setup at Lund University Cognitive Science. The setup is currently
used in the ongoing research regarding robot attention and one purpose of the
implementation was that it should be possible to use in this context. In order
to understand the design choices made a description of the robot setup will first
be given. Then the implementation will be described.

3.1 The Robot Setup

The robot used is the e-puck, a small, muffin sized robot developed by Ecole
Polytechnique Fédérale de Lausanne (www.e-puck.org). Its a differential wheeled
robot boosting eight infra-red proximity sensors, a camera, accelerometer and
Bluetooth connectivity. The e-puck also have very precise step motors to control
its wheels. One problem is that no matter how precise the e-pucks odometry
is it can not solely be used to determine the robot’s poses. Another problem is
the proximity sensors of the e-puck. They have very limited range, roughly 10
cm, and are sensitive with respect to light conditions.

In order to remedy these problems a video camera has been placed in the
ceiling of room where the robot experiments take place. The robots movements
are restricted to a 2 x 2 m? “sandbox” and objects in this area have been given
color codes. Robots are wearing bright red plastic cups, the floor, the free space,
is dark gray and obstacles are white. Images from the camera are processed in
order to extract the poses of the robots and an image where only the obstacles
are visible. Given this image and a robots pose a circle sector is cut out of the
image, its center being the robots position and its direction being the robots
heading. By using this as the robots sensor reading the robot can be treated
as if it had a high resolution proximity sensor. The robots are controlled over
Bluetooth link.

Figure 2: The e-puck.



3.2 The Implementation

3.2.1 Ikaros

The whole system is implemented using Ikaros, a multi-purpose framework de-
veloped at LUCS. Ikaros is written in C++ and is intended for, among other
things, brain modeling and robot control. The central concept in Ikaros is the
module, and a system built in Ikaros is a collection of connected modules. An
Ikaros module is simply put, a collection of inputs and an algorithm that works
on these, the result ending up in a number of outputs. A modules inputs and
outputs are defined by an Ikaros control file using an XML based language while
the algorithm is implemented in C++.

A modules outputs can be connected to other modules inputs and to build
a working system in Ikaros you would specify these connection in a control file.
In this control file you could also give arguments to the modules. The data that
can be transmitted between modules can only be in one format, that is arrays
and matrices of floats. An Ikaros system works in discrete time-steps, so called
“ticks”. Each tick every module receives input and produces output.

Ikaros comes with a number of modules, both simple utility modules and
more advanced such as several image feature extraction modules. Ikaros also
includes a web interface that can display outputs in different ways. For a detailed
introduction to Ikaros please see Balkenius et al. (2007).

3.2.2 Overview of the System

The core of the map drawing system consists of five modules: Camera, Tracker,
CameraSensor, SensorModel and OccupancyGridMap. Further modules could
be added to the system, e.g. a path planning module and a robot controller
module. The connections between these modules are given in figure 3.

Camera ‘{RED > Tracker ’,’/777777777777777777777777i 777777777
GREEN, POSE -~ o Camera AFFECTED REGION

BLUE . SensorModel|| occ prOB GRID

OBSTACLES, CameraSensor|| sENSOR READING PRIOR PROB GRID

EpuckController |- — — HEADING _ _ _ Pathfinding

e.g. WaveFront

Figure 3: The connections between the modules of the map drawing system,
with added path planning and robot control modules.

3.2.3 Camera and Tracker

The Camera and Tracker modules were already available and will only be de-
scribed briefly.

The Camera module is basically a network camera interface and it is used to
fetch images from the camera mounted in the ceiling. It outputs three matrices;
RED, GREEN and BLUE, the size of the image, containing the corresponding color
intensities of the image.
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These matrices are fed into the Tracker module that extracts the poses
of robots and the positions of obstacles in the image. It outputs one array
POSITION with the positions of the robots, one array HEADING with the headings
of the robots and one matrix 0BSTACLES with the obstacles extracted from the
picture. POSITION is of the form [rl;, 71,724,172, ...] where rn, and rn, is
the nth robots  and y coordinate receptively. x and y are in the range 0.0 to
1.0 and the origo is in the upper left corner of the image. HEADING is of the
same form as POSITION except for that rn, and rn, define a direction vector
for the nth robot. The POSITION and HEADING will be referred to as the POSE.
OBSTACLES is in the form of an occupancy grid over the area covered by the
camera image, where 1.0 denotes an obstacle and 0.0 denotes free space.

3.2.4 CameraSensor

The CameraSensor module simulates a high resolution proximity sensor. It
requires a matrix in the form of Tracker’s 0BSTACLES matrix and an array with
the position of a robot as inputs. More specific we want to simulate a top
mounted stereo camera. This is because, in the robot attention research at
LUCS, it is useful if the robots has a “head” they can turn to direct attention.
The CameraSensor module takes arguments specifying he range of the camera
and the breadth of the view. Given the pose of the robot a square is cut out of the
matrix, this square is rotated and projected onto another matrix representing
the SENSOR READING of the robot. The SENSOR READING shows everything in
the cut out square, even obstacles behind walls. Some simple ray-casting will
solve this. Rays are shot from the center of the robot to the edge lying on the
opposite side of the SENSOR READING matrix so that the cells touched by the
rays form a circle sector. If a ray hits an obstacle the ray stops and all cells not
touched by any ray obtains the value 0.5 indicating it’s not part of the sensor
reading. CameraSensor then outputs SENSOR READING.

3.2.5 CameraSensorModel

The CameraSensorModel is an inverse sensor model tailored to work with the
output of the CameraSensor. CameraSensorModel has two outputs, both re-
quired by OccupancyGridMap: AFFECTED GRID REGION and OCC PROB GRID.
0CC PROB GRID is a matrix the same size as the final occupancy grid that con-
tains the probabilities P(m|s;, p;). AFFECTED GRID REGION is an array of length
four defining a box bounding the area of the occupancy grid that is affected by
the 0CC PROB GRID. The rationale behind this is that 0ccupancyGridMap should
not have to update the whole occupancy grid when only a small area of it is
affected by the current SENSOR READING.

The SENSOR READING from CameraSensor is already in the format of an
occupancy grid, so transforming this into 0CC PROB GRID in the format the
OccupancyGridMap module requires, is pretty straight forward. First 0CC PROB
GRID is initialized with P(m), the prior probability, given as an argument to
CameraSensorModel. Then the SENSOR READING is rotated and translated, ac-
cording to the robots pose, so that it covers the corresponding area of the 0CC
PROB GRID. The SENSOR READING is then imprinted on the 0OCC PROB GRID.
The values of SENSOR READING; 1.0, 0.5 and 0.0, should not be used directly
as they do not correspond to the right probabilities. Instead 0.5 is substi-
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tuted by the prior probability and 1.0 and 0.0 are substituted by two values
free_prob and occ_prob given as arguments to CameraSensorModel. The val-
ues of free_prob and occ_prob should reflect probability that the information
in SENSOR READING is correct. As the Camera and Tracker modules are quite
exact good values seems to be; free_prob= 0.05 and occ_prob = 0.95. The
performance of occupancy grid algorithm depends heavily on these values and
they have to be adjusted according to the reliability of SENSOR READING. This
will be further discussed in section 4.

3.2.6 OccupancyGridMap

The OccupancyGridMap take two inputs in the formats of 0CC PROB GRID and
AFFECTED GRID REGION. OccupancyGridMap also contains the state of the oc-
cupancy grid constructed so far; MAP GRID, and the prior probability; pri_prob,
given as an argument. The MAP GRID is initialized by giving each cell the value
of pri_prob.

The purpose of OccupancyGridMap is to update MAP GRID using the update
equation (10). This is done by applying (10) on all cells in MAP GRID that
are inside the box defined by AFFECTED GRID REGION. Here follows the update
equation taken directly from the code:

for(int i = affected_grid_region[2];
i <= affected_grid_region[3]; i++)
{
for(int j = affected_grid_region[0];
j <= affected_grid_region[1]; j++)
{
float occ_prob = occ_prob_grid[i] [j];
map_grid[i][j] = 1.0 / (
1.0 + (1.0 - occ_prob) / occ_prob *
prior_prob / (1.0 - prior_prob) *
(1.0 - map_grid[il[j]1) / map_grid[il[j1);

}
}

An example of an how a MAP GRID could look is given in figure 4.
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Figure 4: The image to the right shows the probabilities of a number of sensor
readings and the image to the left shows the resulting occupancy grid map.

3.3 Experiment Setup
3.3.1 Evaluating the Implementation

The implementation of the occupancy grid algorithm works very well on the
robot setup at LUCS. This is no big surprise as the conditions are ideal, there
is practically no sensor noise nor pose uncertainty. In order to investigate
how the implementation would handle different conditions a number of exper-
iments were made, where noise was added to the sensor readings. How the
implementation reacts to noise is highly dependent on the two parameters of
CameraSensorModel; free_prob and occ_prob. Thus for each experiment, ex-
cept for Ne 2 three different values of free_prob and occ_prob were used to
illustrate this. The following values were used (using the notation [free_prob,
occ_prob]): [0.01, 0.99], [0.2, 0.8] and [0.45, 0.55]. These values will be referred
to as the sensor weights, as they reflect to what degree the occupancy grid map
algorithm is persuaded by new sensor readings. All experiments used pri_prob
= 0.5. The parameters free_prob and occ_prob might seem to be very specific
for the CameraSensorModel but any sensor model will have parameters that
governs to what degree the sensor readings should be trusted.

The experiments were setup in the following way: A robot was places in the
middle of the 2 x 2 m? “sandbox” and a number of obstacles were placed around
it, the result is shown in figure 5 . The “camera” of CameraSensor was given a
range of /2 m and a breadth of 32°. The robot does not move but each tick the
heading of the robot is randomized, in this way the robot will eventually have
“seen” the whole “sandbox” visible from the center. Four different experiments
were then conducted:

1. The ideal case. No noise was added, this is to get an measure to compare
the other experiments with.
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Figure 5: The experiment setup at LUCS. The real world “sandbox” is to the
left and the grid showing the extracted obstacles is to the right.

2. Gaussian white noise was added to the 0CC PROB GRID of the CameraSensorModel.

The noise had a variance of 0.1 and was applied to each cell OPG[x,y] in
the following way:

0PG[x,y] + abs(noise) if OPG[x,y] < pri prob
OPG[x,y] = { pri_prob if OPG[x,y] == pri_prob.
OPG[x,y] — abs(noise) if OPG[x,y] > pri_prob

This experiment only uses free_prob=0.0 and occ_prob=1.0.

. Salt and Pepper noise was added to 40 % of the OCC PROB GRID that
represents the current sensor reading. That is, each cell that does no
have the value pri_prob is given, by the toss of a coin, one of the values
free_prob and occ_prob by a chance of 40%.

. Gaussian white noise was added to he robot’s position given as input to
the CameraSensorModel. The noise had a variance of 0.001.

In order to compare the different experiment setups the score measure described
in section 2.3 was used. The ideal map was constructed by running experiment
Ne 1 with free_prob=0.45 and occ_prob=0.55 for 2000 steps. The probabilities
of this map was then rounded to the closest of the values 1.0, pri_prob and 0.0.
Given this ideal map the possible maximum score is 640.

3.3.2 Using the Implementation

To show that the map drawing implementation can be used in practice an Ikaros
system was setup to control an e-puck robot. Basically, this is the system shown
in figure 3, including the dashed lines. The goal of the e-puck was to find another
e-puck wandering randomly in a maze. The e-puck was not given a path to the
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other e-puck, only its position. In order to find a path to the other e-puck the
wavefront algorithm described in 2.4.1 was used. The e-puck would begin with
an empty map, which it would build up gradually as it tried different paths to
the other e-puck. Eventually, the map would be complete enough so that the
e-puck would find a safe path to the other e-puck.

4 Results

Here the results of he experiments will be presented. Generally the implemen-
tation performed well in all four experiments but what became obvious is that
the choice of sensor weights is important. Each experiment was run for a 1 000
ticks. As all of the experiments contain a randomized component a single run
might not produce a characteristic result. To avoid this, each experiment was
run ten times and the average of each tick was taken. The result of this is show
in figures 6, 7, 8 and 9. When interpretating these charts one should know that
a score above 500 corresponds to a reasonably good map. Rather than looking
for the sensor weights that eventually results in the best score one should look
for the sensor weights that converge fast to a reasonable score. Most often a
robot has more use for a good enough map now, that for a perfect map in five
minutes. Because of this, the charts only display up to tick 500, even if the
maps continue to converge after that.

4.1 Experiment Ne 1

This was the ideal case and as shown in figure 6 the algorithm performs well
for both [0.01, 0.99] and [0.2, 0.8]. Even if [0.45, 0.55] surpasses them both
eventually, it converges to slow to be practically useful.
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[0.01,0.99] —---—1[0.2,0.8]  -eeeeeeeees [0.45, 0.55]

Max Score

Figure 6: Experiment Ne 1, the ideal case.
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4.2 Experiment Ne 2

The outcome of this experiment, as shown in figure 7, show the strength of the
probabilistic approach to robotic mapping. The algorithm handles the noisy

sensor readings well and the map converges nearly as fast as [0.2, 0.8] from Ne
1.
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[0.0, 1.0] + Gaussian White Noise —---= Ne 1, [0.2, 0.8]

Max Score

Figure 7: Experiment Ne 2

4.3 Experiment Ne 3

Figure 8 show how to high or to low set sensor weight impacts the performance
of the algorithm. While [0.2, 0.8] converges nicely, [0.45, 0.55] converges steady
but too slow. As [0.01, 0.99] is the most sensible to noise, it converges slowly
and never produces a reliable map.
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Figure 8: Experiment Ne 3
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4.4 Experiment Ne 4

In this last experiment the score measure is a bit misleading. All three choices
of sensor weights actually produces acceptable maps. What happens in the case
of [0.01, 0.99] is that the edges of the obstacles get slightly displaced, which the
score measure penalizes. Even though [0.01, 0.99] of Ne 3 and Ne 4 score the
same, the map from Ne 3 is practically unusable, while the map from Ne 4 is OK.
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[0.01,0.99] —---—1[0.2,0.8]  -eeeeeeeees [0.45, 0.55] Max Score

Figure 9: Experiment Ne 4

5 Discussion

5.1 Summary

This thesis has described an implementation of the occupancy grid map algo-
rithm. This algorithm was implemented to be used with the e-puck robot, using
the Ikaros framework. A derivation of the update equation, the basis of the algo-
rithm, was given, as well as a measure for comparing maps. The implementation
worked well. This was no surprise as the sensors and the pose tracking system
produced very exact information. To investigate how noise would affect the per-
formance of the algorithm a number of experiments were conducted. Gaussian
white noise was applied to the sensors and the pose tracking system, and so
called salt and pepper noise was applied to the sensors only. To show that the
implementation was usable in practice a system was constructed that made an
e-puck draw an occupancy grid map. The e-puck then used this map to find a
path to another e-puck wandering randomly.

5.2 Evaluation of the Experiments

Experiment N¢ 1 show that the algorithm works well given ideal preconditions.
This is no surprise, but it is important note how the tuning of sensor weights
impacts the performance. When the sensor weights are set so that the algorithm
put little trust in the sensors, the map converges steadily but unnecessarily slow.
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Experiment Ne 2 and 3 show the strength of the algorithm, its capability to
handle independent noise. Both the sensor readings of N¢ 2 and 3 are very noisy,
indeed it is often hard for the human eye to separate true obstacles from noise.
The algorithm manages this well, given that the sensor weights are set so that
the algorithm does not put to much trust in the sensors.

Experiment Ne 4 show that the algorithm can produce an acceptable map
when the position is noisy. The tuning of the sensor weights does not have such
an impact as figure 9 might suggest. This is due to the fact that the score
measure does not reward correctly identified obstacles that are off by a small
distance. One problem with positional noise is that it does not lead to sensor
noise that is statistically independent. If the positional noise is to large the
algorithm will not be able to handle it no matter how the sensor weights are
tuned.

The implementation of the e-puck control system described in section 3.3.2
worked well in simulation. The two robots steadily moved towards each other,
drawing the map and avoiding obstacles as they went along. When trying this
with the real robots there were some problems. The Tracker module sometimes
confused one of the robots for the other one. Also there were some problems
communicating with two robots over one Bluetooth connection. Nevertheless,
the occupancy grid map algorithm, in combination with the wavefront path
planner, always produced a correct path, even if the robot had troubles following
it.

5.3 Limitations

The big limitation of the occupancy grid map algorithm is that it does not han-
dle unknown poses. There are ways around this and it would be interesting to
study this further. The algorithm could also be tuned in different ways. E.g.
when the robot is not moving it might be the case that non-independent noise
gets imprinted in the map. This might be remedied by developing a scheme
were sensor readings are blocked when the robot is immobile. It could also
be interesting to experiment with variable sensor weights. For example, if the
robot has spent a lot of time in an area, the sensor weights might be adjusted
so that the robot puts more trust in its internal map and less trust in its sensors.

In spite of its limitation the occupancy grid map algorithm is, as this thesis

has shown, a robust and versatile algorithm. When in need for a robotic map-
ping algorithm one should have good reasons not to consider using it.
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