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AbstratMap-making Robots: A Review of the Oupany Grid MapAlgorithm.This thesis reviews the oupany grid algorithm, one of the most pop-ular algorithms for roboti mapping. Its bakground is desribed thor-oughly, highlighting features and shortomings. The algorithm is imple-mented on a robot setup at Lund University Cognitive Siene, and anumber of experiments are onduted where the algorithm is exposed todi�erent kinds of noise. The outome show that the algorithm performswell given its parameters are tuned right. The onlusion is made that,in spite of its limitations, the oupany grid map algorithm is a robustalgorithm that works well in pratie.SammanfattningKartritande Robotar: En utvärdering av �Oupany GridMap� Algoritmen.Denna uppsats behandlar en av de populäraste algoritmerna för kar-tritning för robotar, den s.k. �oupany grid map� algoritmen. Dess bak-grund beskrivs grundligt oh för oh nakdelar belyses. Algoritmen im-plementeras på ett robotsystem hos kognitionsvetenenskap vid Lunds uni-versitet, oh ett antal experiment utföres. Detta för att se hur algoritmenklarar av olika sorters sensorstörningar. Det visar sig att algoritmen klararsig bra såvida dess parametrar är korrekt inställda. Slutsatsen blir att �o-upany grid map� algoritmen är, trots vissa inneboende begränsningar,en robust algoritm som fungerar väl i praktiken.
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1 IntrodutionMaps are extremely useful artifats. A map helps us relate to plaes we havenever been to and shows us the way if we deide we want to go there. Foran autonomous robot a map is even more useful as it ould, if it is detailedenough, serve as the robots internal representation of the world. The �eld ofroboti mapping is quite young and started to reeive attention �rst in the early80s. Sine then a lot of e�ort has gone into onstruting robust roboti mappingalgorithms, but the hallenge is great as the way a human intuitively would builda map an not be diretly appliable to a robot. Whereas a human possessessuperior vision sensors and an loate herself by identifying landmarks, a robot,most often, only have sensors that approximates the distane to the losest walls.The onditions of roboti mapping atually loser resembles the onditions for a15th entury ship mapping unharted water. Similar to the ship the robot onlyknows the approximate distane to the losest obstales, it ould happen thatall obstales are so far away that the robot senses void and it is often di�ultfor the robot to keep trak of its position and heading. As opposed to the ship,a robot using a faulty map will bump into walls in a disgraeful manner, whilethe ship, on the other hand, might disover Ameria.A long-standing goal of AI and robotis researh has been to onstrut trulyautonomous robots, apable of reasoning about and interating with their en-vironment. It is hard to see how this ould be realized without general robustmapping algorithms.1.1 The Mapping ProblemWhat is a map? And what does it mean to build one?From a robot's point of view a map is a data struture representing an areaof the world. By means of this data struture the robot should be able toloalize it self in and navigate around this area. Any data struture that allowsthe robot to do this quali�es as a map. Many di�erent ways to represent mapshave been proposed but most representations an be labeled either metri ortopologial. A metri map is a map where the distanes between every pointof the map are enoded. What we normally think of as a map, e.g. a worldmap, is a metri map. A topologial map is a map where only the onnetionsbetween a set of features are enoded, e.g. the onnetions between rooms ina building. The map of the London Underground is a real world example of atopologial map. A map representation that is both metri and topologial isalled a hybrid map. A survey of map representations, with a fous on hybridmaps, is given by Bushka (2005).To build a map, is to take a number of sensor readings from a robot, asensor reading being a disrete-time sample from a robots sensor, and ingratethem into a map. This is not as straight forward as it might sound as there aremany reasons why roboti mapping is a hard problem.� Noisy Sensors. The sensors robots are equipped with, even the most ex-pensive ones, are not aurate enough to be relied on diretly. For exam-ple, infra-red proximity sensors are sensitive to di�erenes in lightning andsome surfaes does not re�et sound well enough to be sensed by sonarbased proximity sensors. 2



� Sensor integration. Even if sensor always supplied orret information,building maps would not be easy. To integrate sensor information intoa map representation many things has to be onsidered: How should in-formation from sensors be interpreted? How are the sensors positionedon the robot? How should ontraditory information from overlappingsensors be treated?� Loalization errors. To build maps the robots pose, that is the robotsposition and heading, has to be know. Naïvely one would think it wouldsu�e to use the robots odometry, that is e.g. the information about howmany revolutions the wheels of a robot have made. The problem withodometry is that it is never exat and that the errors aumulate overtime.� Dynami environments. When the environment is stati the mappingtask is basially to partition a spae into oupied spae and free spae.In reality all environments are dynami and this leads to many di�ulties.How should dynami objets be identi�ed? How should dynami objetsbe represented in the map? More onretely, how ould a robot distinguishbetween a door that has disappeared and a door that just been opened?� High omputational omplexity. The number of variables needed to de-sribe an area is usually very large irrespetive of what map representationis used. This is espeially true for metri maps in 3D where the spae om-plexity most often is linear with respet to the volume of the area mapped.Time omplexity is also a onern as roboti mapping algorithms are sup-posed to work in real time.A introdutory text explaining why roboti mapping is hard and how this ouldbe dealt with is given by Thrun (2002).1.2 The Approah of this ThesisThis thesis desribes an implementation of a map building algorithm for a robotsetup at Lund University Cognitive Siene (LUCS). One goal with the imple-mentation was that it should be possible to use it in the researh at LUCS. Themain harateristis of the robot setup are that the environment is stati andthat the pose is given, therefore it does not indue all the di�ulties mentionedabove. The given pose is not without noise but there will never be the problemwith umulative position noise. Even if the problem is eased it is still far fromtrivial thus interesting in its own right. The setup will be further desribed insetion 3.Given these preondition the oupany grid map algorithm, �rst desribedby Elfes and Morave (1985), was hosen. Its bakground and derivation isdesribed in detail in setion 2, but the basi idea is simple: Represent the partof the world you want to map with a grid. When you observe an obstale, markthe ells overed by that obstale as oupied.The oupany grid map algorithm was implemented and a number of ex-periments were onduted to investigate how it would perform given di�erenttypes of sensor noise. The results of the experiments are presented in setion 4.3



2 The Oupany Grid Map AlgorithmOne naïve way of solving the problem with noisy sensors would be to simplyount the number of times a sensor reports an obstale at a partiular plae.Eah time a position p is sanned, inrement a ounter cp, eah time an obstaleis deteted at p, inrement a ounter op. The probability that p is oupied isthen of ourse op/cp. One problem with this approah is that, as time passes,the ounters will grow larger to eventually over�ow.The oupany grid map algorithm is an algorithm for building metri mapsthat solves this problem. It was developed in the mid 80s by Efes and Moraveand is a reursive Bayesian estimation algorithm. Here reursive means that inorder integrate an nth sensor reading into a map no history of sensor readingsis neessary. This is a useful property whih implies that sensor readings anbe integrated online and that the spae and time omplexity is onstant withrespet to the number of sensor readings. The algorithm is Bayesian beausethe entral update equation is based on Bayes theorem:
P (A|B) =

P (B|A)P (A)

P (B)whih answers the question �what is the probability of A given B�, if weknow the probabilities P (B|A), P (A) and P (B).The map data struture is a grid, in 2D or 3D, that represents a region inspae. This thesis will treat the 2D ase, thus the region is a retangle. The valueof eah ell of the grid is the estimated probability that the orresponding areain spae is oupied. The region orresponding to a ell is always onsideredompletely oupied or ompletely empty. One an have di�erent de�nitionsregarding whether a region is free or oupied, but often a region is onsideredoupied if any part of it is oupied.The algorithm onsists of two separate parts: the update equation and asensor model. The update equation, desribed in setion 2.1, is the basis of thealgorithm and does not have to hange for di�erent robot setups. The sensormodel on the other hand depends on the robot setup and eah robot setuprequires a ustomized sensor model. One an onstrut sensor models in manyways but the basi approah is desribed in setion 2.2.The omputational omplexity of the algorithm depends on the implemen-tation of the sensor model. Apart from that, eah update loop have time om-plexity O(n′m′), where n′ and m′ are the number of olumns and rows of thegrid that are a�eted by the urrent sensor reading. The spae omplexity is
O(nm) where n and m are the total number of olumns and rows of the grid.An aessible introdution to oupany grid maps is given by Elfes (1989).The original algorithm is limited in several ways. It requires that the robotspose is given, thus it an not rely solely on the odometry of the robot. It pre-sumes a stati environment or requires sensor readings where dynami obstaleshave been �ltered. Finally the area to be mapped has to be spei�ed in ad-vane. This might sound like severe limitations but in many robot setups onean assume a stati environment and that there is a way to dedue the robotspose. The original algorithm has also been suessfully extended to deal withe.g. unknown robot poses (Thrun et al. 1999).4



2.1 The Update EquationThis setion will desribe the derivation of the update equation from Bayes the-orem. For greater detail please see Choset et al. (2005). First some de�nitions:Let st denote the sensor reading at time t and let st denote the sensorreadings s0, s1,, . . . , st. Let pt denote the pose at time t and let pt denote theposes p0, p1,, . . . , pt. Let g be the oupany grid and let gx,y be the ell of gat 〈x, y〉. Let m be the area g overs and let mx,y be a binary variable thatdenotes the oupany of the area orresponding to gx,y.
gx,y is the same as P (mx,y|st, pt), the probability that mx,y is oupiedgiven the �rst t sensor readings. The oupany grid map algorithm assumesthat the oupany of mx,y is independent of the rest of m. Thus to get thevalue P (m|st, pt) we only need to onsider P (mx,y|st, pt) for all x and y. Wewant to be able to alulate this value reursively, that is we want to be ableto go from P (mx,y|st−1, pt−1) to P (mx,y|st, pt) without knowledge of st−1 and

pt−1.The rest of this setion will show the derivation of an update equation thatgives P (mx,y|st, pt) given three probabilities; P (mx,y) the prior probability that
mx,y is oupied, P (mx,y|pt−1, st−1), whih we an retrieve from our grid and
P (mx,y|pt, st), whih is alled the inverse sensor model.The update equation uses a version of Bayes theorem with three variables;

P (A|B, C) =
P (B|A, C)P (A|C)

P (B|C)
(1)whih an be derived in the following way:

P (A|B, C) =
P (A, B, C)

P (B, C)
=

P (B|A, C)P (A|C)P (C)

P (C)P (B|C)
= (2)

P (B|A, C)P (A|C)

P (B|C)
.Using (1), substituting A with mx,y, B with st and C with pt, st−1 gives:

P (mx,y|st, pt) =
P (st|mx,y, p

t, st−1)P (mx,y|pt, st−1)

P (st|pt, st−1)
(3)(3) an be simpli�ed by assuming that, given we know m, st is independentof st−1and pt−1 giving

P (mx,y|st, pt) =
P (st|mx,y, pt)P (mx,y|pt, st−1)

P (st|pt, st−1)
. (4)By applying (1) on P (st|mx,y, pt) we get

P (st|mx,y, pt) =
P (mx,y|pt, st)P (st|pt)

P (mx,y|pt)
. (5)Now we insert (5) into (4). We notie that pt does not arry any informationabout mx,y if there is no information about st, thus we have

P (mx,y|st, pt) =
P (mx,y|pt, st)P (st|pt)P (mx,y|pt−1, st−1)

P (mx,y)P (st|pt, st−1)
. (6)5



Now we want to get rid of P (st|pt, st−1) and P (st|pt). We do this by notiingthat sine mx,y is a binary variable, we have P (¬mx,y) = 1− P (mx,y) and
1− P (mx,y|st, pt) =

(1− P (mx,y|pt, st))P (st|pt)(1 − P (mx,y|pt−1, st−1))

(1 − P (mx,y))P (st|pt, st−1)
. (7)Dividing (6) by (7) gives

P (mx,y|st, pt)

1− P (mx,y|st, pt)
=

P (mx,y|pt, st)

1− P (mx,y|pt, st)

1− P (mx,y)

P (mx,y)

P (mx,y|pt−1, st−1)

1− P (mx,y|pt−1, st−1)
.(8)Using the following equality

P (A) =
P (A)

P (A) + 1− P (A)
=

1

1 +
1− P (A)

P (A)

=

(

1 +

(

P (A)

1− P (A)

)−1
)−1

, (9)by substituting P (A) with P (mx,y|st, pt) and P (A)

1− P (A)
with the RHS of (8) weget the �nal update equation:

P (mx,y|st, pt) =

(

1 +
1− P (mx,y|st, pt)

P (mx,y|st, pt)

P (mx,y)

1− P (mx,y)

1− P (mx,y|pt−1, st−1)

P (mx,y|pt−1, st−1)

)−1

.(10)As stated above we need the three probabilities P (mx,y|pt−1, st−1), P (mx,y)and P (mx,y|st, pt) in order to update gx,y with a new sensor reading st. P (mx,y|pt−1, st−1)is easy, its the urrent value of gx,y. P (mx,y) is normally a onstant hosen bythe one implementing the algorithm. Its value is somewhat arbitrary and aommon hoie is 0.5 as this makes the middle fator of the RHS of (10) dis-appear. P (mx,y|st, pt) is the probability that gx,y is oupied given only onesensor reading. To get this value we need an inverse sensor model.2.2 The Inverse Sensor ModelA sensor model is a proedure for alulating the probability P (st|m, pt). There-fore it follows that the proedure for alulating P (m|st, pt) is alled an inversesensor model, that is the probability of m given only one sensor reading. Aninverse sensor model an be though of as funtion ism(st, pt) that returns agrid the size of g where the probabilities of P (m|st,pt) are imprinted. Thereis not only one orret way to onstrut ism(st, pt) for a given sensor, di�erentapproahes have di�erent advantages.An example of how the output of an inverse sensor model ould look is givenin �gure 1.
6



Figure 1: Illustration of an inverse sensor model for a robot equipped withinfra-red proximity sensors.The piture to the left show what the robot senses. The piture to the rightis the resulting oupational probabilities. White denotes oupied spae,blakdenotes free spae and gray denotes unknown spae. Notie how the blakstrokes fade with the distane to the robot. This indiates that the probabilitythat a sensor detets an obstale dereases with the distane to the obstale.An inverse sensor model an be built by hand or learned, for an example ofthe �rst see Elfes and Morave (1985) or the one desribed in setion 3.2.5, foran example of the latter see Thrun et al. (1998).2.3 Comparing MapsIt ould be that one wants two ompare two maps. Espeially one would wantto ompare a onstruted oupany grid map with an ideal map to evaluate the�tness of an implementation. An approah to measure this is given by Martinand Morave (1996).Let I be the ideal map over the same area as a onstruted oupany gridmap m. I then only ontains the values 1.0, 0.5 and 0.0, where 0.5 indiatethat the value of the orresponding ell is unknown. The probability that a ell
mx,y represents the same thing as Ix,y is Ix,ymx,y + (1 − Ix,y)(1 −mx,y). Theprobability that m represents the same as I is then:

∏

x,y

(Ix,ymx,y + (1− Ix,y)(1−mx,y)) . (11)A problem is that this value will be very small for large maps. In order toremedy this we take the log2 of (11) and add |I|. This results in the followingsore measure:
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Score = |I|+ log2

(

∏

x,y

(Ix,ymx,y + (1 − Ix,y)(1 −mx,y))

) (12)
=
∑

x,y

(1 + log2(Ix,ymx,y + (1− Ix,y)(1−mx,y)) .The maximum sore of m is then |I| minus the number of ells of I that areequal to 0.5.2.4 Using a MapWhen a robot has onstruted a map it should be able to use it for navigation.In the ase of an oupany grid map this is fortunately relatively straightforward. An oupany grid map g an be onverted into an easy to navigatemap in two steps. First g is thresholded so that all ells of g have either 0.0 or 1.0as value. Then all oupied ell, that is ells with a value of 1.0, are expandedby the radius of the robot. The free ells of g an now be onsidered a graphembedded in the plane where all verties represent a position the robot an bein without the risk of hitting an obstale. g is a fully onneted graph and youan now use many di�erent algorithms to �nd a path between two verties. Themost popular algorithm for path �nding is probably the A∗ algorithm.Things are more di�ult in the ase of an un�nished oupany grid mapwhere the values of the ells are in the range (0.0, 1.0). If the goal of the robotlies inside an area that has not been visited, there is no way to onstrut a safepath. But by means of a value iteration algorithm, also known as a wavefrontalgorithm, one an onstrut the probably safest path.2.4.1 The Wavefront AlgorithmLet g be the un�nished oupany grid and let gg be the goal ell of a robot. Theprobability that a robot safely an pass through one ell gx,y, is the probabilitythat gx,y is empty. Thus the probability that a robot safely an travel a path pis the probability
∏

gx,y∈p

gx,y,where {gx,y|gx,y ∈ p} ontain all those ells that p traverses. The wavefrontalgorithm will onstrut a grid w where eah ell wx,y holds the probabilitythat gg an be reahed from wx,y. Then to �nd a path from any ell to gg youmove to the neighboring ell with the highest probability of reahing gg, repeatthis until gg is reahed.In pseudo-ode a proedure to onstrut w is:
wg ← 1.0while w onvergesfor eah x and y

wmax ← the ell adjaent to wx,y with highest value
wx,y ← wmax − c if wx,y ≤ wmax − cHere c is a onstant that denotes the ost of moving. If c is set to 0.0 thewavefront algorithm will �nd the safest path. The more c is inreased the more8



will the wavefront algorithm favor short paths over safe paths. More informationabout the wavefront algorithm, and many other algorithms for path�nding, anbe found in Russell and Norvig (2002).3 ImplementationThis setion desribes how the oupany grid algorithm was implemented ona robot setup at Lund University Cognitive Siene. The setup is urrentlyused in the ongoing researh regarding robot attention and one purpose of theimplementation was that it should be possible to use in this ontext. In orderto understand the design hoies made a desription of the robot setup will �rstbe given. Then the implementation will be desribed.3.1 The Robot SetupThe robot used is the e-puk, a small, mu�n sized robot developed by ÉolePolytehnique Fédérale de Lausanne (www.e-puk.org). Its a di�erential wheeledrobot boosting eight infra-red proximity sensors, a amera, aelerometer andBluetooth onnetivity. The e-puk also have very preise step motors to ontrolits wheels. One problem is that no matter how preise the e-puks odometryis it an not solely be used to determine the robot's poses. Another problem isthe proximity sensors of the e-puk. They have very limited range, roughly 10m, and are sensitive with respet to light onditions.In order to remedy these problems a video amera has been plaed in theeiling of room where the robot experiments take plae. The robots movementsare restrited to a 2× 2 m2 �sandbox� and objets in this area have been givenolor odes. Robots are wearing bright red plasti ups, the �oor, the free spae,is dark gray and obstales are white. Images from the amera are proessed inorder to extrat the poses of the robots and an image where only the obstalesare visible. Given this image and a robots pose a irle setor is ut out of theimage, its enter being the robots position and its diretion being the robotsheading. By using this as the robots sensor reading the robot an be treatedas if it had a high resolution proximity sensor. The robots are ontrolled overBluetooth link.

Figure 2: The e-puk.9



3.2 The Implementation3.2.1 IkarosThe whole system is implemented using Ikaros, a multi-purpose framework de-veloped at LUCS. Ikaros is written in C++ and is intended for, among otherthings, brain modeling and robot ontrol. The entral onept in Ikaros is themodule, and a system built in Ikaros is a olletion of onneted modules. AnIkaros module is simply put, a olletion of inputs and an algorithm that workson these, the result ending up in a number of outputs. A modules inputs andoutputs are de�ned by an Ikaros ontrol �le using an XML based language whilethe algorithm is implemented in C++.A modules outputs an be onneted to other modules inputs and to builda working system in Ikaros you would speify these onnetion in a ontrol �le.In this ontrol �le you ould also give arguments to the modules. The data thatan be transmitted between modules an only be in one format, that is arraysand matries of �oats. An Ikaros system works in disrete time-steps, so alled�tiks�. Eah tik every module reeives input and produes output.Ikaros omes with a number of modules, both simple utility modules andmore advaned suh as several image feature extration modules. Ikaros alsoinludes a web interfae that an display outputs in di�erent ways. For a detailedintrodution to Ikaros please see Balkenius et al. (2007).3.2.2 Overview of the SystemThe ore of the map drawing system onsists of �ve modules: Camera, Traker,CameraSensor, SensorModel and OupanyGridMap. Further modules ouldbe added to the system, e.g. a path planning module and a robot ontrollermodule. The onnetions between these modules are given in �gure 3.
Figure 3: The onnetions between the modules of the map drawing system,with added path planning and robot ontrol modules.3.2.3 Camera and TrakerThe Camera and Traker modules were already available and will only be de-sribed brie�y.The Camera module is basially a network amera interfae and it is used tofeth images from the amera mounted in the eiling. It outputs three matries;RED, GREEN and BLUE, the size of the image, ontaining the orresponding olorintensities of the image. 10



These matries are fed into the Traker module that extrats the posesof robots and the positions of obstales in the image. It outputs one arrayPOSITION with the positions of the robots, one array HEADING with the headingsof the robots and one matrix OBSTACLES with the obstales extrated from thepiture. POSITION is of the form [r1x, r1y, r2x, r2y . . .] where rnx and rny isthe nth robots x and y oordinate reeptively. x and y are in the range 0.0 to1.0 and the origo is in the upper left orner of the image. HEADING is of thesame form as POSITION exept for that rnx and rny de�ne a diretion vetorfor the nth robot. The POSITION and HEADING will be referred to as the POSE.OBSTACLES is in the form of an oupany grid over the area overed by theamera image, where 1.0 denotes an obstale and 0.0 denotes free spae.3.2.4 CameraSensorThe CameraSensor module simulates a high resolution proximity sensor. Itrequires a matrix in the form of Traker's OBSTACLES matrix and an array withthe position of a robot as inputs. More spei� we want to simulate a topmounted stereo amera. This is beause, in the robot attention researh atLUCS, it is useful if the robots has a �head� they an turn to diret attention.The CameraSensor module takes arguments speifying he range of the ameraand the breadth of the view. Given the pose of the robot a square is ut out of thematrix, this square is rotated and projeted onto another matrix representingthe SENSOR READING of the robot. The SENSOR READING shows everything inthe ut out square, even obstales behind walls. Some simple ray-asting willsolve this. Rays are shot from the enter of the robot to the edge lying on theopposite side of the SENSOR READING matrix so that the ells touhed by therays form a irle setor. If a ray hits an obstale the ray stops and all ells nottouhed by any ray obtains the value 0.5 indiating it's not part of the sensorreading. CameraSensor then outputs SENSOR READING.3.2.5 CameraSensorModelThe CameraSensorModel is an inverse sensor model tailored to work with theoutput of the CameraSensor. CameraSensorModel has two outputs, both re-quired by OupanyGridMap: AFFECTED GRID REGION and OCC PROB GRID.OCC PROB GRID is a matrix the same size as the �nal oupany grid that on-tains the probabilities P (m|st, pt). AFFECTED GRID REGION is an array of lengthfour de�ning a box bounding the area of the oupany grid that is a�eted bythe OCC PROB GRID. The rationale behind this is that OupanyGridMap shouldnot have to update the whole oupany grid when only a small area of it isa�eted by the urrent SENSOR READING.The SENSOR READING from CameraSensor is already in the format of anoupany grid, so transforming this into OCC PROB GRID in the format theOupanyGridMapmodule requires, is pretty straight forward. First OCC PROBGRID is initialized with P (m), the prior probability, given as an argument toCameraSensorModel. Then the SENSOR READING is rotated and translated, a-ording to the robots pose, so that it overs the orresponding area of the OCCPROB GRID. The SENSOR READING is then imprinted on the OCC PROB GRID.The values of SENSOR READING; 1.0, 0.5 and 0.0, should not be used diretlyas they do not orrespond to the right probabilities. Instead 0.5 is substi-11



tuted by the prior probability and 1.0 and 0.0 are substituted by two valuesfree_prob and o_prob given as arguments to CameraSensorModel. The val-ues of free_prob and o_prob should re�et probability that the informationin SENSOR READING is orret. As the Camera and Traker modules are quiteexat good values seems to be; free_prob= 0.05 and o_prob = 0.95. Theperformane of oupany grid algorithm depends heavily on these values andthey have to be adjusted aording to the reliability of SENSOR READING. Thiswill be further disussed in setion 4.3.2.6 OupanyGridMapThe OupanyGridMap take two inputs in the formats of OCC PROB GRID andAFFECTED GRID REGION. OupanyGridMap also ontains the state of the o-upany grid onstruted so far; MAP GRID, and the prior probability; pri_prob,given as an argument. The MAP GRID is initialized by giving eah ell the valueof pri_prob.The purpose of OupanyGridMap is to update MAP GRID using the updateequation (10). This is done by applying (10) on all ells in MAP GRID thatare inside the box de�ned by AFFECTED GRID REGION. Here follows the updateequation taken diretly from the ode:for(int i = affeted_grid_region[2℄;i <= affeted_grid_region[3℄; i++){ for(int j = affeted_grid_region[0℄;j <= affeted_grid_region[1℄; j++){ float o_prob = o_prob_grid[i℄[j℄;map_grid[i℄[j℄ = 1.0 / (1.0 + (1.0 - o_prob) / o_prob *prior_prob / (1.0 - prior_prob) *(1.0 - map_grid[i℄[j℄) / map_grid[i℄[j℄);}}An example of an how a MAP GRID ould look is given in �gure 4.
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Figure 4: The image to the right shows the probabilities of a number of sensorreadings and the image to the left shows the resulting oupany grid map.3.3 Experiment Setup3.3.1 Evaluating the ImplementationThe implementation of the oupany grid algorithm works very well on therobot setup at LUCS. This is no big surprise as the onditions are ideal, thereis pratially no sensor noise nor pose unertainty. In order to investigatehow the implementation would handle di�erent onditions a number of exper-iments were made, where noise was added to the sensor readings. How theimplementation reats to noise is highly dependent on the two parameters ofCameraSensorModel; free_prob and o_prob. Thus for eah experiment, ex-ept for � 2, three di�erent values of free_prob and o_prob were used toillustrate this. The following values were used (using the notation [free_prob,o_prob℄): [0.01, 0.99℄, [0.2, 0.8℄ and [0.45, 0.55℄. These values will be referredto as the sensor weights, as they re�et to what degree the oupany grid mapalgorithm is persuaded by new sensor readings. All experiments used pri_prob= 0.5. The parameters free_prob and o_probmight seem to be very spei�for the CameraSensorModel but any sensor model will have parameters thatgoverns to what degree the sensor readings should be trusted.The experiments were setup in the following way: A robot was plaes in themiddle of the 2×2 m2 �sandbox� and a number of obstales were plaed aroundit, the result is shown in �gure 5 . The �amera� of CameraSensor was given arange of √2 m and a breadth of 32◦. The robot does not move but eah tik theheading of the robot is randomized, in this way the robot will eventually have�seen� the whole �sandbox� visible from the enter. Four di�erent experimentswere then onduted:1. The ideal ase. No noise was added, this is to get an measure to omparethe other experiments with. 13



Figure 5: The experiment setup at LUCS. The real world �sandbox� is to theleft and the grid showing the extrated obstales is to the right.2. Gaussian white noise was added to the OCC PROB GRID of the CameraSensorModel.The noise had a variane of 0.1 and was applied to eah ell OPG[x, y] inthe following way:
OPG[x, y] =











OPG[x, y] + abs(noise) if OPG[x, y] < pri_prob
pri_prob if OPG[x, y] == pri_prob
OPG[x, y]− abs(noise) if OPG[x, y] > pri_prob .This experiment only uses free_prob=0.0 and o_prob=1.0.3. Salt and Pepper noise was added to 40 % of the OCC PROB GRID thatrepresents the urrent sensor reading. That is, eah ell that does nohave the value pri_prob is given, by the toss of a oin, one of the valuesfree_prob and o_prob by a hane of 40%.4. Gaussian white noise was added to he robot's position given as input tothe CameraSensorModel. The noise had a variane of 0.001.In order to ompare the di�erent experiment setups the sore measure desribedin setion 2.3 was used. The ideal map was onstruted by running experiment� 1 with free_prob=0.45 and o_prob=0.55 for 2000 steps. The probabilitiesof this map was then rounded to the losest of the values 1.0, pri_prob and 0.0.Given this ideal map the possible maximum sore is 640.3.3.2 Using the ImplementationTo show that the map drawing implementation an be used in pratie an Ikarossystem was setup to ontrol an e-puk robot. Basially, this is the system shownin �gure 3, inluding the dashed lines. The goal of the e-puk was to �nd anothere-puk wandering randomly in a maze. The e-puk was not given a path to the14



other e-puk, only its position. In order to �nd a path to the other e-puk thewavefront algorithm desribed in 2.4.1 was used. The e-puk would begin withan empty map, whih it would build up gradually as it tried di�erent paths tothe other e-puk. Eventually, the map would be omplete enough so that thee-puk would �nd a safe path to the other e-puk.4 ResultsHere the results of he experiments will be presented. Generally the implemen-tation performed well in all four experiments but what beame obvious is thatthe hoie of sensor weights is important. Eah experiment was run for a 1 000tiks. As all of the experiments ontain a randomized omponent a single runmight not produe a harateristi result. To avoid this, eah experiment wasrun ten times and the average of eah tik was taken. The result of this is showin �gures 6, 7, 8 and 9. When interpretating these harts one should know thata sore above 500 orresponds to a reasonably good map. Rather than lookingfor the sensor weights that eventually results in the best sore one should lookfor the sensor weights that onverge fast to a reasonable sore. Most often arobot has more use for a good enough map now, that for a perfet map in �veminutes. Beause of this, the harts only display up to tik 500, even if themaps ontinue to onverge after that.4.1 Experiment � 1This was the ideal ase and as shown in �gure 6 the algorithm performs wellfor both [0.01, 0.99℄ and [0.2, 0.8℄. Even if [0.45, 0.55℄ surpasses them botheventually, it onverges to slow to be pratially useful.
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4.2 Experiment � 2The outome of this experiment, as shown in �gure 7, show the strength of theprobabilisti approah to roboti mapping. The algorithm handles the noisysensor readings well and the map onverges nearly as fast as [0.2, 0.8℄ from �1.
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� ����� �!�Figure 7: Experiment � 24.3 Experiment � 3Figure 8 show how to high or to low set sensor weight impats the performaneof the algorithm. While [0.2, 0.8℄ onverges niely, [0.45, 0.55℄ onverges steadybut too slow. As [0.01, 0.99℄ is the most sensible to noise, it onverges slowlyand never produes a reliable map.
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4.4 Experiment � 4In this last experiment the sore measure is a bit misleading. All three hoiesof sensor weights atually produes aeptable maps. What happens in the aseof [0.01, 0.99℄ is that the edges of the obstales get slightly displaed, whih thesore measure penalizes. Even though [0.01, 0.99℄ of � 3 and � 4 sore thesame, the map from� 3 is pratially unusable, while the map from� 4 is OK.
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��� ���������Figure 9: Experiment � 45 Disussion5.1 SummaryThis thesis has desribed an implementation of the oupany grid map algo-rithm. This algorithm was implemented to be used with the e-puk robot, usingthe Ikaros framework. A derivation of the update equation, the basis of the algo-rithm, was given, as well as a measure for omparing maps. The implementationworked well. This was no surprise as the sensors and the pose traking systemprodued very exat information. To investigate how noise would a�et the per-formane of the algorithm a number of experiments were onduted. Gaussianwhite noise was applied to the sensors and the pose traking system, and soalled salt and pepper noise was applied to the sensors only. To show that theimplementation was usable in pratie a system was onstruted that made ane-puk draw an oupany grid map. The e-puk then used this map to �nd apath to another e-puk wandering randomly.5.2 Evaluation of the ExperimentsExperiment � 1 show that the algorithm works well given ideal preonditions.This is no surprise, but it is important note how the tuning of sensor weightsimpats the performane. When the sensor weights are set so that the algorithmput little trust in the sensors, the map onverges steadily but unneessarily slow.17



Experiment � 2 and 3 show the strength of the algorithm, its apability tohandle independent noise. Both the sensor readings of � 2 and 3 are very noisy,indeed it is often hard for the human eye to separate true obstales from noise.The algorithm manages this well, given that the sensor weights are set so thatthe algorithm does not put to muh trust in the sensors.Experiment � 4 show that the algorithm an produe an aeptable mapwhen the position is noisy. The tuning of the sensor weights does not have suhan impat as �gure 9 might suggest. This is due to the fat that the soremeasure does not reward orretly identi�ed obstales that are o� by a smalldistane. One problem with positional noise is that it does not lead to sensornoise that is statistially independent. If the positional noise is to large thealgorithm will not be able to handle it no matter how the sensor weights aretuned.The implementation of the e-puk ontrol system desribed in setion 3.3.2worked well in simulation. The two robots steadily moved towards eah other,drawing the map and avoiding obstales as they went along. When trying thiswith the real robots there were some problems. The Trakermodule sometimesonfused one of the robots for the other one. Also there were some problemsommuniating with two robots over one Bluetooth onnetion. Nevertheless,the oupany grid map algorithm, in ombination with the wavefront pathplanner, always produed a orret path, even if the robot had troubles followingit.5.3 LimitationsThe big limitation of the oupany grid map algorithm is that it does not han-dle unknown poses. There are ways around this and it would be interesting tostudy this further. The algorithm ould also be tuned in di�erent ways. E.g.when the robot is not moving it might be the ase that non-independent noisegets imprinted in the map. This might be remedied by developing a shemewere sensor readings are bloked when the robot is immobile. It ould alsobe interesting to experiment with variable sensor weights. For example, if therobot has spent a lot of time in an area, the sensor weights might be adjustedso that the robot puts more trust in its internal map and less trust in its sensors.In spite of its limitation the oupany grid map algorithm is, as this thesishas shown, a robust and versatile algorithm. When in need for a roboti map-ping algorithm one should have good reasons not to onsider using it.~
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