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One advantage of working within a Bayesian statistical framework is that it is relatively straight forward to
modify and extend model definitions. What follows are four possible modifications of the models presented
in  the  main  paper.  Example  implementation  of  these  model  using  R  and  JAGS  can  be  found  here:
https://github.com/rasmusab/bayes_timing

1. Extending the Model with Informative Priors 

One advantage with a Bayesian approach is that prior knowledge about task performance can be incorporated
into the analysis.  A subjective Bayesian model  is  feasible in the case where there exists sufficient prior
information regarding the parameters. This is often the case regarding SMS studies where many published
papers include descriptive statistics of the distribution of constant error and timing variability at different
tempi  (for  a  comprehensive  review  see  Repp  and  Su,  2013;  Repp,  2005).  Prior  information  can  be
incorporated in the hierarchical model by replacing the vague top-level priors with distributions that can be
made  more  or  less  informative  depending on  the  strength  of  the  prior  information.  What  follows  is  a
modification of the hierarchical model presented in the paper that enables the inclusion of prior information
in the analysis. 
The prior on the group mean µµ is a normal distribution with parameters µµ,µ and σµ,µ. The prior on the mean
group SD mσ is a log-normal distribution with parameters µm.σ and σm,σ. To facilitate the use of informative
priors this prior is reparameterized to be specified by its arithmetic mean mm,σ and SD sm,σ. As proposed by
Gelman,  2006,  the  SD parameters  sσ and  σσ are  given  half-Cauchy  priors  with  parameter  ss,σ and  sσ,µ

respectively. It is straightforward to be informative regarding the half-Cauchy priors as the scale parameter
defines the median of the distribution (Lunn et al., 2012). The full specification of model is then:

 

Figure 1 shows a hierarchical diagram of the model specification.



Figure 1
A diagram of the informative hierarchical model.

2. Extending the Model by Adding a Functional Dependency Between ISI levels.

The hierarchical model presented in the paper currently allows that data from one participant informs the
parameters of all other participants due to the hierarchical structure of the model. Data from one ISI level
does not inform parameters for other ISI levels, however. A dependency between ISI levels can be introduced
in many ways, where one possibility is to introduce a functional dependency between ISI levels for the
parameters at the group level. Below is a modification of the hierarchical model where there group mean (µµ)
and the group standard deviation (mσ) is assumed to depend linearly on the ISI level. Here  k  indexes the
different ISI levels with ISIk being the ISI in ms at level k.

Where the regression coefficients βµ,0, βµ,ISI, βσ,0, βσ,ISI could be given vague priors. Care has to be taken so that
mσ,k will not take negative values. This can be done by shifting the ISI values so that the shortest ISI level is
at the zero and constraining  βσ,0,  βσ,ISI to take on only positive values. As an example, data from twelve
participants from Bååth and Madison (2012) was used to fit this model. Figure 2 and Figure 3 show the
median posterior for the mean asynchrony and asynchrony SD. The colored circles show the group mean
(µµ ,k  in green, mσ ,k in red), with the colored bars showing one and two SDs (σµ ,k in green, sσ ,k in red), and the
gray circles showing the estimates for each participant. In the case where the assumed functional dependency



between ISI levels corresponds well with the data then this modification of the hierarchical model will allow
for better informed estimates than if data from each ISI level was estimated on its own. 

Figure 2
Estimated  group  mean  (green)  with  individual  estimates  in  grey  from  the  hierarchical  model  with  a
functional dependency between ISI levels.

Figure 3
Estimated group SDs (red) with individual estimates in grey from the hierarchical model with a functional 
dependency between ISI levels.

3. Extending the Model by Modeling the Correlation between Timing Performance at Different ISI
levels.

An alternative way of introducing dependencies between ISI levels is to model parameters at the participant
level as coming from a multivariate normal distribution. This type of dependency can capture patterns such
as that participants with large timing variability at the 600 ms ISI level also tend to have a relatively large
variability at the 1200 ms ISI level. This, without imposing a functional dependency between ISI levels. Here
there  many  options,  one  or  more  participant  level  parameters  could  be  given  a  multivariate  normal



distribution,  and  the  parameters  of  the  multivariate  normal  distributions  could  in  turn  be  assumed  to
dependent on the ISI level. Below is a modification of the hierarchical model presented in the paper where
the  logarithms  of  the  participant  level  asynchrony  standard  deviations,  log(σ j,k),  are  modeled  as  being
distributed as a multivariate normal distribution. Here k again indexes the different ISI levels with ISIk being
the ISI in ms at level k, and n being the total number of ISI levels. Now µσ, 1...n is a vector of means and Σσ is
an  n by  n covariance matrix. A default  non-informative prior to use for  Σσ  could be an Inverse-Wishard
distribution with parameters In, a n by n identity matrix, and n degrees of freedom.

Figure 4 shows posterior draws from the distribution that resulted from fitting 
the model above to finger tapping data from the 30 participants in Bååth and Madison (2012). There is some 
positive correlation visible, indicating that participants that had a high variability at one ISI level tended to 
have a relatively high variability at other ISI levels. This correlation also seems strongest between adjacent 
ISI levels.

Figure 4



The estimated correlation structure shown as a sample of 1000 draws from the posterior distribution of the

distribution. The red squares marks the marginal means of the posterior.

4. Extending the Model to work with Interresponse Intervals.
 
The model described in this paper model the stimulus-to-response asynchronies in an SMS task. When the
timing responses are self-paced, as in the synchronization-continuation paradigm (Stevens, 1886), there is no
referent tone onset and the interresponse intervals, the time difference between consecutive timed responses,
are instead the focus of the analysis. The model described in the this paper can be modified to accommodate
interresponse interval data by changing the right-censored normal distribution to a normal distribution and by
modifying the prior distribution parameters. For the non-hierarchical model a proposal would be to use:

Where T is the target interval and k is a constant that is large enough so that the prior distributions include all
reasonable values of µ and σ.
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