
A crash course to Stan’s syntax.

The basic syntax is similar to all “curly bracket”
languages, such as C and JavaScript. But
assignment and vectorization is similar to R.

// This is a comment (but # also works)
Here are some legal Stan statements
x = x + 1;
x = sqrt((x + 1) * 3);
if(x > 10) {

x = 0;
}
“;” is necessary after each statement.

Basic types
real x;
int y;
Vectors are list of real numbers
vector[10] v; # A vector of length 10
Matrices are tables of real numbers
matrix[2,4] mat; # A 2 by 4 matrix
Arrays are lists of any data type
int a[4]; # A 4 length array of integers
Arrays can also be of higher dimension
int a2[4, 3]; # A 4 by 3 array

As opposed to JavaScript, R and python, Stan is
statically typed, and there are a lot of types
specific to statistical modelling.

real mu; # No constraint implies [-∞, ∞]
real<lower=0> sigma; # [0, ∞]
int y<lower=0, upper=1>; # a “boolean”
Works for vectors and arrays as well
vector<lower=1>[3] v;
int<upper=0> a[4];
There are many “speciality” data types
simplex[3] p; # A vector of 3 positive

 # reals that sums to 1.
corr_matrix[3] Sigma; # a 3 by 3
 #correlation matrix

All types can have constraints. Constraints are
required for variables acting as parameters.

data { # the required data for the model
Declarations ...

}
parameters { # the model’s parameters

Declarations ...
}
model { # Defines the statistical model
 # Declarations followed by statements ...
}
generated quantities {

Declarations followed by statements ...
}
But there are more block types...

A Stan program consists of a number of blocks.

x ~ normal(mu, sigma); # Read as: x is
 # distributed as a normal distribution
 # with mean mu and SD sigma.
There are many built in distribution.
mu ~ uniform(0, 100);
sigma ~ gamma(2, 2);
x1 ~ student_t(nu, mu, sigma);
lambda ~ exponential(1);
y ~ poisson(lambda);
p ~ beta(a, b);
s ~ binomial(30, p);

Sampling statements define statistical relations
between parameters and data.

sum(v1); # Sums all elements in v;
v1 + v2; # The vector of the pairwise sum

 # of v1 and v2
Assume all elements of v are normal.
v ~ normal(mu, sigma);
This is equivalent to using the for loop:
for (i in 1:n) {
 v[i] ~ normal(mu, sigma);
}
Note that “[]” is used to index vectors
and arrays, and that 1 is the first index.

As in R, many functions are vectorized.
Here assuming v1 and v2 are vectors.

data {
int n;
int x;

}
parameters {

real<lower=0, upper=1> p;
}
model {
 p ~ uniform(0, 1);
 x ~ binomial(n, p);
}

A minimal Stan program implementing a binomial
model.

library(rstan)
data_list <- list(n = 30, x = 10)
s <- stan(model_code = model_string,

data = data_list)

Running a Stan program is usually done from
another language such as Python or R.
(Here assuming model_string contains the model
from the last slide.)

import pystan
data_list = dict(n = 30, x = 10)
s = pystan.stan(model_code = model_string,

 data = data_list)

